Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038692

RESUMO

Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense (Foc), is a serious disease that threatens banana production worldwide. It is a long-standing problem in Hawaii, but there was little knowledge of the causal pathogen. We isolated a strain of Foc, named Foc-UH, from a field experiencing the disease epidemic in Hawaii. Infection assays of a diverse panel of 26 banana clones, including varieties used for differentiating pathogen races and fruit production, revealed Foc-UH has a race 1 pathogenic phenotype with an intermediate race 2 virulence, and revealed the differential resistance of varieties to infection. Separate phylogenetic analyses using the barcoding regions of three nuclear genes, seven complete nuclear genes, and single nucleotide polymorphisms within conserved whole genome protein coding sequences, placed Foc-UH into recently proposed taxonomic frameworks relevant to Foc and the Fusarium oxysporum species complex. Screening of the 99.7% complete draft genome identified five secreted in xylem (SIX) gene homologs, including SIX1d, SIX1f, SIX9a, SIX9b, and SIX13a. This profile is similar to that of several race 1 isolates except the absence of SIX4 and SIX6. Foc-UH was morphologically dissimilar to the nearest related isolates. Altogether, this study identified a unique isolate that causes banana Fusarium wilt, which represents the first characterization of the causal pathogen in Hawaii. The findings and the genomic resources generated in this study are expected to guide banana breeding and cultivar deployment in Hawaii and beyond, and contribute to further understanding of the pathogenicity and evolutionary systematics of Foc.

2.
PLoS One ; 16(6): e0253245, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34111225

RESUMO

Sweet basil (Ocimum basilicum) is an economically important allotetraploid (2n = 4x = 48) herb whose global production is threatened by downy mildew disease caused by the obligate biotrophic oomycete, Peronospora belbahrii. Generation of disease resistant cultivars by mutagenesis of susceptibility (S) genes via CRISPR/Cas9 is currently one of the most promising strategies to maintain favored traits while improving disease resistance. Previous studies have identified Arabidopsis DMR6 (Downy Mildew Resistance 6) as an S gene required for pathogenesis of the downy mildew-causing oomycete pathogen Hyaloperonospora arabidopsidis. In this study, a sweet basil homolog of DMR6, designated ObDMR6, was identified in the popular sweet basil cultivar Genoveser and found to exist with a high copy number in the genome with polymorphisms among the variants. Two CRISPR/Cas9 constructs expressing one or two single guide RNAs (sgRNAs) targeting the conserved regions of ObDMR6 variants were generated and used to transform Genoveser via Agrobacterium-mediated transformation. 56 T0 lines were generated, and mutations of ObDMR6 were detected by analyzing the Sanger sequencing chromatograms of an ObDMR6 fragment using the Interference of CRISPR Edits (ICE) software. Among 54 lines containing mutations in the targeted sites, 13 had an indel percentage greater than 96% suggesting a near-complete knockout (KO) of ObDMR6. Three representative transgene-free lines with near-complete KO of ObDMR6 determined by ICE were identified in the T1 segregating populations derived from three independent T0 lines. The mutations were further confirmed using amplicon deep sequencing. Disease assays conducted on T2 seedlings of the above T1 lines showed a reduction in production of sporangia by 61-68% compared to the wild-type plants and 69-93% reduction in relative pathogen biomass determined by quantitative PCR (qPCR). This study not only has generated transgene-free sweet basil varieties with improved downy mildew resistance, but also contributed to our understanding of the molecular interactions of sweet basil-P. belbahrii.


Assuntos
Sistemas CRISPR-Cas/genética , Resistência à Doença/genética , Ocimum basilicum/genética , Doenças das Plantas/genética , Arabidopsis/genética , Mutagênese/genética , Ocimum basilicum/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Plântula/genética , Plântula/microbiologia
3.
Plant Direct ; 4(6): e00233, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537560

RESUMO

Sweet basil (Ocimum basilicum) is an economically important herb and its global production is threatened by basil downy mildew caused by the obligate biotrophic oomycete Peronospora belbahrii. Effective tools are required for functional understanding of its genes involved in synthesis of valuable secondary metabolites in essential oil and disease resistance, and breeding for varieties with improved traits. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 gene editing technology has revolutionized crop breeding and functional genomics. The applicability and efficacy of this genomic tool in the allotetraploid sweet basil were tested by editing a potential susceptibility (S) gene ObDMR1, the basil homolog of Arabidopsis DMR1 (Downy Mildew Resistant 1) whose mutations conferred nearly complete resistance against Arabidopsis downy mildew pathogen, Hyaloperonospora arabidopsidis. Two single guide RNAs targeting two different sites of the ObDMR1 coding sequence were designed. A total of 56 transgenic lines were obtained via Agrobacterium-mediated stable transformation. Mutational analysis of 54 T0 transgenic lines identified 92.6% lines carrying mutations at target 1 site, while a very low mutation frequency was detected at target 2 site. Deep sequencing of six T0 lines revealed various mutations at target 1 site, with a complete knockout of all alleles in one line. ObDMR1 homozygous mutant plants with some being transgene free were identified from T1 segregating populations. T2 homozygous mutant plants with 1-bp frameshift mutations exhibited a dwarf phenotype at young seedling stage. In summary, this study established a highly efficient CRISPR/Cas9-mediated gene editing system for targeted mutagenesis in sweet basil. This system has the capacity to generate complete knockout mutants in this allotetraploid species at the first generation of transgenic plants and transgene-free homozygous mutants in the second generation. The establishment of this system is expected to accelerate basil functional genomics and breeding.

4.
Sci Rep ; 10(1): 2319, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047196

RESUMO

Phytophthora palmivora is a destructive oomycete plant pathogen with a wide host range. So far, little is known about the factors governing its infection structure development and pathogenicity. From the culture filtrate of a P. palmivora strain isolated from papaya, we identified a secreted glycoprotein of 15 kDa, designated as Ppal15kDa, using liquid chromatography tandem mass spectrometry. Two gene variants, Ppal15kDaA and Ppal15kDaB were amplified from a P. palmivora papaya isolate. Transient expression of both variants in Nicotiana benthamiana by agroinfiltration enhanced P. palmivora infection. Six Ppal15kDa mutants with diverse mutations were generated via CRISPR/Cas9-mediated gene editing. All mutants were compromised in infectivity on N. benthamiana and papaya. Two mutants with all Ppal15kDa copies mutated almost completely lost pathogenicity. The pathogenicity of the other four containing at least one wild-type copy of Ppal15kDa was compromised at varying levels. The mutants were also affected in development as they produced smaller sporangia, shorter germ tubes, and fewer appressoria. The affected levels in development corresponded to the levels of reduction in pathogenicity, suggesting that Ppal15kDa plays an important role in normal development of P. palmivora infection structures. Consistent with its role in infection structure development and pathogenicity, Ppal15kDa was found to be highly induced during appressorium formation. In addition, Ppal15kDa homologs are broadly present in Phytophthora spp., but none were characterized. Altogether, this study identified a novel component involved in development and pathogenicity of P. palmivora and possibly other Phytophthora spp. known to contain a Ppal15kDa homolog.


Assuntos
Carica/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Phytophthora/crescimento & desenvolvimento , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Virulência , Carica/microbiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
5.
Bio Protoc ; 10(22): e3828, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659480

RESUMO

Sweet basil (Ocimum basilicum) is a popular herb with high economic value and is currently threatened by a severe oomycete disease. An efficient transformation method is a prerequisite for gene functional analysis to accelerate molecular breeding and deploy effective disease management strategies, and breeding through genetic engineering. Here we present a detailed protocol for a highly efficient Agrobacterium tumefaciens-mediated transformation method for sweet basil, which was established based on a previously reported method by other researchers, with modifications on several aspects, including growth of sweet basil, age of plants used for explants, preparation and concentration of Agrobacteria. This protocol allows researchers in academia and agroindustry to generate transgenic sweet basil plants in an easy, quick and highly reproducible manner. In addition, this protocol may be applicable to transform other species within the genus Ocimum.

6.
Mol Plant Microbe Interact ; 31(3): 363-373, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29068239

RESUMO

Papaya fruits, stems, and leaves are rich in papain, a cysteine protease that has been shown to mediate plant defense against pathogens and insects. Yet the oomycete Phytophthora palmivora is a destructive pathogen that infects all parts of papaya plants, suggesting that it has evolved cysteine protease inhibitors to inhibit papain to enable successful infection. Out of five putative extracellular cystatin-like cysteine protease inhibitors (PpalEPICs) from P. palmivora transcriptomic sequence data, PpalEPIC8 appeared to be unique to P. palmivora and was highly induced during infection of papaya. Purified recombinant PpalEPIC8 strongly inhibited papain enzyme activity, suggesting that it is a functional cysteine protease inhibitor. Homozygous PpalEPIC8 mutants were generated using CRISPR/Cas9-mediated gene editing via Agrobacterium-mediated transformation (AMT). Increased papain sensitivity of in-vitro growth and reduced pathogenicity during infection of papaya fruits were observed for the mutants compared with the wild-type strain, suggesting that PpalEPIC8, indeed, plays a role in P. palmivora virulence by inhibiting papain. This study provided genetic evidence demonstrating that plant-pathogenic oomycetes secrete cystatins as important weapons to invade plants. It also established an effective gene-editing system for P. palmivora by the combined use of CRISPR/Cas9 and AMT, which is expected to be applicable to other oomycetes.


Assuntos
Carica/microbiologia , Espaço Extracelular/metabolismo , Papaína/metabolismo , Phytophthora/patogenicidade , Inibidores de Proteases/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Carica/efeitos dos fármacos , Frutas/microbiologia , Edição de Genes , Mutação/genética , Phytophthora/efeitos dos fármacos , Doenças das Plantas/microbiologia , Inibidores de Proteases/química , Virulência/efeitos dos fármacos
7.
PLoS One ; 12(5): e0175795, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28459807

RESUMO

Rubber tree (Hevea brasiliensis Muell. Arg) is an important economic crop in Thailand. Leaf fall and black stripe diseases caused by the aggressive oomycete pathogen Phytophthora palmivora, cause deleterious damage on rubber tree growth leading to decrease of latex production. To gain insights into the molecular function of H. brasiliensis subtilisin-like serine proteases, the HbSPA, HbSPB, and HbSPC genes were transiently expressed in Nicotiana benthamiana via agroinfiltration. A functional protease encoded by HbSPA was successfully expressed in the apoplast of N. benthamiana leaves. Transient expression of HbSPA in N. benthamiana leaves enhanced resistance to P. palmivora, suggesting that HbSPA plays an important role in plant defense. P. palmivora Kazal-like extracellular protease inhibitor 10 (PpEPI10), an apoplastic effector, has been implicated in pathogenicity through the suppression of H. brasiliensis protease. Semi-quantitative RT-PCR revealed that the PpEPI10 gene was significantly up-regulated during colonization of rubber tree by P. palmivora. Concurrently, the HbSPA gene was highly expressed during infection. To investigate a possible interaction between HbSPA and PpEPI10, the recombinant PpEPI10 protein (rPpEPI10) was expressed in Escherichia coli and purified using affinity chromatography. In-gel zymogram and co-immunoprecipitation (co-IP) assays demonstrated that rPpEPI10 specifically inhibited and interacted with HbSPA. The targeting of HbSPA by PpEPI10 revealed a defense-counterdefense mechanism, which is mediated by plant protease and pathogen protease inhibitor, in H. brasiliensis-P. palmivora interactions.


Assuntos
Hevea/enzimologia , Interações Hospedeiro-Patógeno , Phytophthora/metabolismo , Proteínas de Plantas/metabolismo , Inibidores de Proteases/metabolismo , Serina Proteases/metabolismo , Cromatografia de Afinidade , Resistência à Doença/fisiologia , Escherichia coli , Técnicas de Transferência de Genes , Hevea/genética , Hevea/parasitologia , Imunoprecipitação , Organismos Geneticamente Modificados , Phytophthora/genética , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Proteases/genética , Nicotiana/genética , Nicotiana/metabolismo
8.
Plant Dis ; 101(5): 734-737, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-30678558

RESUMO

Suppression of root-knot nematodes (Meloidogyne spp.) by vermicompost tea (VCT) has been inconsistent. Greenhouse and laboratory trials were conducted to compare the effects of VCT prepared from different curing ages of vermicompost (VC) on root penetration, reproduction, and hatching of M. incognita. In the penetration experiment, zucchini (Cucurbita pepo) seedlings were drenched with VCT prepared from (i) uncured (UVC), (ii) partially cured (PVC), (iii) completely cured (CVC) vermicompost, and (iv) water or no vermicompost (NVC) 3 days prior to M. incognita inoculation. The experiment was repeated twice on cucumber (Cucumis sativus) and terminated one week after nematode inoculation. All three trials showed that UVC and PVC reduced (P ≤ 0.05) penetration of M. incognita compared with CVC and NVC. Two greenhouse trials showed that VCT from different curing ages of VC did not reduce the abundance of M. incognita juveniles in soil and eggs in roots 2.5 months after nematode inoculation. Two laboratory trials to examine hatching consistently showed that VCT from UVC and PVC suppressed hatching (P ≤ 0.05) compared with NVC, achieving 83.1% hatch reduction by UVC. Overall, VCT from UVC and PVC suppressed root penetration and hatching, but not the reproduction of M. incognita over time.

9.
BMC Microbiol ; 16(1): 204, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27599726

RESUMO

BACKGROUND: As an agriculturally important oomycete genus, Phytophthora contains a large number of destructive plant pathogens that severely threaten agricultural production and natural ecosystems. Among them is the broad host range pathogen P. palmivora, which infects many economically important plant species. An essential way to dissect their pathogenesis mechanisms is genetic modification of candidate genes, which requires effective transformation systems. Four methods were developed for transformation of Phytophthora spp., including PEG(polyethylene glycol)/CaCl2 mediated protoplast transformation, electroporation of zoospores, microprojectile bombardment and Agrobacterium-mediated transformation (AMT). Among them, AMT has many advantages over the other methods such as easy handling and mainly generating single-copy integration in the genome. An AMT method previously reported for P. infestans and P. palmivora has barely been used in oomycete research due to low success and low reproducibility. RESULTS: In this study, we report a simple and efficient AMT system for P. palmivora. Using this system, we were able to reproducibly generate over 40 transformants using zoospores collected from culture grown in a single 100 mm-diameter petri dish. The generated GFP transformants constitutively expressed GFP readily detectable using a fluorescence microscope. All of the transformants tested using Southern blot analysis contained a single-copy T-DNA insertion. CONCLUSIONS: This system is highly effective and reproducible for transformation of P. palmivora and expected to be adaptable for transformation of additional Phytophthora spp. and other oomycetes. Its establishment will greatly accelerate their functional genomic studies.


Assuntos
Agrobacterium/genética , Técnicas de Transferência de Genes , Biologia Molecular/métodos , Phytophthora/microbiologia , Transformação Genética/genética , Sequência de Bases , Cloreto de Cálcio , Elementos de DNA Transponíveis , DNA Bacteriano , DNA de Protozoário , Eletroporação/métodos , Regulação da Expressão Gênica , Vetores Genéticos , Proteínas de Fluorescência Verde , Canamicina Quinase , Microscopia de Fluorescência , Oomicetos/genética , Plantas/microbiologia , Plantas/parasitologia , Plasmídeos , Polietilenoglicóis , Protoplastos , Reprodutibilidade dos Testes
10.
Front Immunol ; 7: 206, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303403

RESUMO

Salicylic acid (SA) is a critical plant hormone that is involved in many processes, including seed germination, root initiation, stomatal closure, floral induction, thermogenesis, and response to abiotic and biotic stresses. Its central role in plant immunity, although extensively studied, is still only partially understood. Classical biochemical approaches and, more recently, genome-wide high-throughput screens have identified more than two dozen plant SA-binding proteins (SABPs), as well as multiple candidates that have yet to be characterized. Some of these proteins bind SA with high affinity, while the affinity of others exhibit is low. Given that SA levels vary greatly even within a particular plant species depending on subcellular location, tissue type, developmental stage, and with respect to both time and location after an environmental stimulus such as infection, the presence of SABPs exhibiting a wide range of affinities for SA may provide great flexibility and multiple mechanisms through which SA can act. SA and its derivatives, both natural and synthetic, also have multiple targets in animals/humans. Interestingly, many of these proteins, like their plant counterparts, are associated with immunity or disease development. Two recently identified SABPs, high mobility group box protein and glyceraldehyde 3-phosphate dehydrogenase, are critical proteins that not only serve key structural or metabolic functions but also play prominent roles in disease responses in both kingdoms.

11.
PLoS One ; 11(6): e0157591, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27337148

RESUMO

This is the first report to present a full-length cDNA (designated HbPR-1) encoding a putative basic HbPR-1 protein from rubber tree (Hevea brasiliensis) treated with salicylic acid. It was characterized and also expressed in Nicotiana benthamiana using Agrobacterium-mediated transient gene expression system in order to investigate the role of HbPR-1 gene in rubber tree against its oomycete pathogen Phytopthora palmivora and to produce recombinant HbPR-1 protein for microbial inhibition test. The HbPR-1 cDNA was 647 bp long and contained an open reading frame of 492 nucleotides encoding 163 amino acid residues with a predicted molecular mass of 17,681 Da and an isoelectric point (pI) of 8.56, demonstrating that HbPR-1 protein belongs to the basic PR-1 type. The predicted 3D structure of HbPR-1 was composed of four α-helices, three ß-sheets, seven strands, and one junction loop. Expression and purification of recombinant HbPR-1 protein were successful using Agrobacterium-mediated transient expression and one-step of affinity chromatography. Heterologous expression of HbPR-1 in N. benthamiana reduced necrosis areas which were inoculated with P. palmivora zoospores, indicating that the expressed HbPR-1 protein played an important role in plant resistance to pathogens. The purified recombinant HbPR-1 protein was found to inhibit 64% of P. palmivora zoospore germination on a water agar plate compared with control, suggesting that it was an antimicrobial protein against P. palmivora.


Assuntos
Hevea/genética , Phytophthora/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas de Plantas/genética , Antiparasitários/farmacologia , Sítios de Ligação , Clonagem Molecular , Genes de Plantas , Hevea/parasitologia , Estrutura Molecular , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Nicotiana/genética
12.
PLoS Pathog ; 12(3): e1005518, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27007252

RESUMO

Damage-associated molecular pattern molecules (DAMPs) signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3) is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i) MAPK activation, ii) defense-related gene expression, iii) callose deposition, and iv) enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast). Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA), which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor.


Assuntos
Botrytis/imunologia , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Doenças das Plantas/parasitologia , Plantas/imunologia , Ácido Salicílico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Ciclopentanos/metabolismo , Resistência à Doença , Etilenos/metabolismo , Folhas de Planta/genética , Pseudomonas syringae/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
PLoS One ; 10(11): e0143447, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26606248

RESUMO

The plant hormone salicylic acid (SA) controls several physiological processes and is a key regulator of multiple levels of plant immunity. To decipher the mechanisms through which SA's multiple physiological effects are mediated, particularly in immunity, two high-throughput screens were developed to identify SA-binding proteins (SABPs). Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) from plants (Arabidopsis thaliana) was identified in these screens. Similar screens and subsequent analyses using SA analogs, in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology, established that human GAPDH (HsGAPDH) also binds SA. In addition to its central role in glycolysis, HsGAPDH participates in several pathological processes, including viral replication and neuronal cell death. The anti-Parkinson's drug deprenyl has been shown to suppress nuclear translocation of HsGAPDH, an early step in cell death and the resulting cell death induced by the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Here, we demonstrate that SA, which is the primary metabolite of aspirin (acetyl SA) and is likely responsible for many of its pharmacological effects, also suppresses nuclear translocation of HsGAPDH and cell death. Analysis of two synthetic SA derivatives and two classes of compounds from the Chinese medicinal herb Glycyrrhiza foetida (licorice), glycyrrhizin and the SA-derivatives amorfrutins, revealed that they not only appear to bind HsGAPDH more tightly than SA, but also exhibit a greater ability to suppress translocation of HsGAPDH to the nucleus and cell death.


Assuntos
Aspirina/farmacologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/antagonistas & inibidores , Ácido Salicílico/farmacologia , Aspirina/análogos & derivados , Aspirina/química , Aspirina/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Humanos , Estrutura Molecular , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , Ácido Salicílico/química , Ácido Salicílico/metabolismo
14.
Mol Med ; 21: 526-35, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26101955

RESUMO

Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin's bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world's longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage.


Assuntos
Aspirina/farmacologia , Proteína HMGB1/genética , Inflamação/genética , Ácido Salicílico/farmacologia , Aspirina/química , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Proteína HMGB1/biossíntese , Proteína HMGB1/química , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Mutação , Ressonância Magnética Nuclear Biomolecular , Ácido Salicílico/química
15.
Mol Plant Microbe Interact ; 28(4): 379-86, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25584724

RESUMO

Although the plant hormone salicylic acid (SA) plays a central role in signaling resistance to viral infection, the underlying mechanisms are only partially understood. Identification and characterization of SA's direct targets have been shown to be an effective strategy for dissecting the complex SA-mediated defense signaling network. In search of additional SA targets, we previously developed two sensitive approaches that utilize SA analogs in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology to identify and evaluate candidate SA-binding proteins (SABPs) from Arabidopsis. Using these approaches, we have now identified several members of the Arabidopsis glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein family, including two chloroplast-localized and two cytosolic isoforms, as SABPs. Cytosolic GAPDH is a well-known glycolytic enzyme; it also is an important host factor involved in the replication of Tomato bushy stunt virus (TBSV), a single-stranded RNA virus. Using a yeast cell-free extract, an in vivo yeast replication system, and plant protoplasts, we demonstrate that SA inhibits TBSV replication. SA does so by inhibiting the binding of cytosolic GAPDH to the negative (-)RNA strand of TBSV. Thus, this study reveals a novel molecular mechanism through which SA regulates virus replication.


Assuntos
Proteínas de Arabidopsis/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Ácido Salicílico/farmacologia , Tombusvirus/genética , Replicação Viral/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo
16.
New Phytol ; 205(3): 1296-1307, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25365924

RESUMO

Salicylic acid (SA) plays a critical role in plant defense against pathogen invasion. SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense and involves a specific pathway mediated by mitochondria; however, the underlying mechanisms remain largely unknown. The SA-binding activity of the recombinant tomato (Solanum lycopersicum) alpha-ketoglutarate dehydrogenase (Slα-kGDH) E2 subunit of the tricarboxylic acid (TCA) cycle was characterized. The biological role of this binding in plant defenses against tobacco mosaic virus (TMV) was further investigated via Slα-kGDH E2 silencing and transient overexpression in plants. Slα-kGDH E2 was found to bind SA in two independent assays. SA treatment, as well as Slα-kGDH E2 silencing, increased resistance to TMV. SA did not further enhance TMV defense in Slα-kGDH E2-silenced tomato plants but did reduce TMV susceptibility in Nicotiana benthamiana plants transiently overexpressing Slα-kGDH E2. Furthermore, Slα-kGDH E2-silencing-induced TMV resistance was fully blocked by bongkrekic acid application and alternative oxidase 1a silencing. These results indicated that binding by Slα-kGDH E2 of SA acts upstream of and affects the mitochondrial electron transport chain, which plays an important role in basal defense against TMV. The findings of this study help to elucidate the mechanisms of SA-induced viral defense.


Assuntos
Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Ácido Salicílico/metabolismo , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Vírus do Mosaico do Tabaco/fisiologia , Respiração Celular , Resistência à Doença/imunologia , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Solanum lycopersicum/enzimologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Nicotiana/imunologia
17.
Science ; 343(6170): 552-5, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24482481

RESUMO

Accelerated gene evolution is a hallmark of pathogen adaptation following a host jump. Here, we describe the biochemical basis of adaptation and specialization of a plant pathogen effector after its colonization of a new host. Orthologous protease inhibitor effectors from the Irish potato famine pathogen, Phytophthora infestans, and its sister species, Phytophthora mirabilis, which is responsible for infection of Mirabilis jalapa, are adapted to protease targets unique to their respective host plants. Amino acid polymorphisms in both the inhibitors and their target proteases underpin this biochemical specialization. Our results link effector specialization to diversification and speciation of this plant pathogen.


Assuntos
Mirabilis/enzimologia , Mirabilis/microbiologia , Phytophthora infestans/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/microbiologia , Sequência de Aminoácidos/genética , Substituição de Aminoácidos/genética , Evolução Molecular , Filogenia , Phytophthora infestans/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Polimorfismo Genético , Proteínas Secretadas Inibidoras de Proteinases/classificação , Proteínas Secretadas Inibidoras de Proteinases/genética , Especificidade da Espécie
18.
Front Plant Sci ; 5: 777, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25628632

RESUMO

Salicylic acid (SA) is an important hormone involved in many diverse plant processes, including floral induction, stomatal closure, seed germination, adventitious root initiation, and thermogenesis. It also plays critical functions during responses to abiotic and biotic stresses. The role(s) of SA in signaling disease resistance is by far the best studied process, although it is still only partially understood. To obtain insights into how SA carries out its varied functions, particularly in activating disease resistance, two new high throughput screens were developed to identify novel SA-binding proteins (SABPs). The first utilized crosslinking of the photo-reactive SA analog 4-AzidoSA (4AzSA) to proteins in an Arabidopsis leaf extract, followed by immuno-selection with anti-SA antibodies and then mass spectroscopy-based identification. The second utilized photo-affinity crosslinking of 4AzSA to proteins on a protein microarray (PMA) followed by detection with anti-SA antibodies. To determine whether the candidate SABPs (cSABPs) obtained from these screens were true SABPs, recombinantly-produced proteins were generated and tested for SA-inhibitable crosslinking to 4AzSA, which was monitored by immuno-blot analysis, SA-inhibitable binding of the SA derivative 3-aminoethylSA (3AESA), which was detected by a surface plasmon resonance (SPR) assay, or SA-inhibitable binding of [(3)H]SA, which was detected by size exclusion chromatography. Based on our criteria that true SABPs must exhibit SA-binding activity in at least two of these assays, nine new SABPs are identified here; nine others were previously reported. Approximately 80 cSABPs await further assessment. In addition, the conflicting reports on whether NPR1 is an SABP were addressed by showing that it bound SA in all three of the above assays.

19.
Plant J ; 76(4): 603-14, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24004003

RESUMO

Salicylic acid (SA) is a small phenolic molecule with hormonal properties, and is an essential component of the immune response. SA exerts its functions by interacting with protein targets; however, the specific cellular components modulated by SA and critical for immune signal transduction are largely unknown. To uncover cellular activities targeted by SA, we probed Arabidopsis protein microarrays with a functional analog of SA. We demonstrate that thimet oligopeptidases (TOPs) constitute a class of SA-binding enzymes. Biochemical evidence demonstrated that SA interacts with TOPs and inhibits their peptidase activities to various degrees both in vitro and in plant extracts. Functional characterization of mutants with altered TOP expression indicated that TOP1 and TOP2 mediate SA-dependent signaling and are necessary for the immune response to avirulent pathogens. Our results support a model whereby TOP1 and TOP2 act in separate pathways to modulate SA-mediated cellular processes.


Assuntos
Arabidopsis/enzimologia , Metaloendopeptidases/metabolismo , Imunidade Vegetal , Ácido Salicílico/metabolismo , Transdução de Sinais/fisiologia , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Morte Celular , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico
20.
PLoS Pathog ; 8(11): e1003006, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144618

RESUMO

The primary role of Actin-Depolymerizing Factors (ADFs) is to sever filamentous actin, generating pointed ends, which in turn are incorporated into newly formed filaments, thus supporting stochastic actin dynamics. Arabidopsis ADF4 was recently shown to be required for the activation of resistance in Arabidopsis following infection with the phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (Pst) expressing the effector protein AvrPphB. Herein, we demonstrate that the expression of RPS5, the cognate resistance protein of AvrPphB, was dramatically reduced in the adf4 mutant, suggesting a link between actin cytoskeletal dynamics and the transcriptional regulation of R-protein activation. By examining the PTI (PAMP Triggered Immunity) response in the adf4 mutant when challenged with Pst expressing AvrPphB, we observed a significant reduction in the expression of the PTI-specific target gene FRK1 (Flg22-Induced Receptor Kinase 1). These data are in agreement with recent observations demonstrating a requirement for RPS5 in PTI-signaling in the presence of AvrPphB. Furthermore, MAPK (Mitogen-Activated Protein Kinase)-signaling was significantly reduced in the adf4 mutant, while no such reduction was observed in the rps5-1 point mutation under similar conditions. Isoelectric focusing confirmed phosphorylation of ADF4 at serine-6, and additional in planta analyses of ADF4's role in immune signaling demonstrates that nuclear localization is phosphorylation independent, while localization to the actin cytoskeleton is linked to ADF4 phosphorylation. Taken together, these data suggest a novel role for ADF4 in controlling gene-for-gene resistance activation, as well as MAPK-signaling, via the coordinated regulation of actin cytoskeletal dynamics and R-gene transcription.


Assuntos
Fatores de Despolimerização de Actina/biossíntese , Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Citoesqueleto/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Pseudomonas syringae/metabolismo , Transcrição Gênica , Fatores de Despolimerização de Actina/genética , Actinas/genética , Actinas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Citoesqueleto/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Sistema de Sinalização das MAP Quinases/genética , Mutação , Fosforilação/genética , Pseudomonas syringae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...