Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(5): 1823-1831, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462928

RESUMO

BACKGROUND: Zanthoxylum bungeanum pericarps (ZBP) are commonly used as food additives and traditional herbal medicines. Several mineral elements are known to have important physiological functions in organisms, whereas others are reported to have toxic effects. We determined levels of macro elements (Mg, S and Ca), essential trace elements (B, Mn, Fe, Cu, Zn, Se and Mo) and toxic elements (Ni, Al, Cr, As, Cd, Hg and Pb) in the pericarps of 19 Z. bungeanum cultivars. Hazard index values and incremental lifetime cancer risks were calculated to express health risks associated with pericarp consumption. Moreover, several chemometric analyses based on the mineral elements were used to distinguish Z. bungeanum cultivars. RESULTS: The concentrations of 17 determined elements in the pericarps were ranked: Ca > Mg > S > Fe > Al > Mn > Zn > B > Cu > Ni > Pb > Cr > Mo > As > Cd > Hg > Se. The elements Zn, Cr and As had the highest variations in their concentrations. Cu, Mn, Se, Zn, Al, As, Cd, Cr, Hg, Ni and Pb posed some non-cancer risks, while As and Cd posed cancer risks. Mn, Fe, Zn, and Al were chosen as critical element markers for assessing ZBP using chemometric analyses. CONCLUSION: Chemometric analyses could highlight mineral concentration differentiation among the 19 cultivars. The Z. bungeanum cultivar Z12 (from Wudu, Gansu) is best for producing ZBP, and cultivar Z18 (Guanling, Guizhou) can be a reference to classify and evaluate ZBP quality. The results provide valuable information for evaluating the potential safety risks of ZBP and contribute to inter-cultivar discrimination. © 2021 Society of Chemical Industry.


Assuntos
Mercúrio , Oligoelementos , Zanthoxylum , Quimiometria , Mercúrio/análise , Minerais/análise , Oligoelementos/análise , Oligoelementos/toxicidade
2.
Foods ; 10(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921089

RESUMO

Because of extensive cultivation areas, various cultivars, nonstandard naming notations, and morphology similarity among relative cultivars, adulteration and associated business fraud may happen in the marketplaces of prickly ash pericarps due to higher financial gain and high-frequency trading. This study presents variations in the chemical components and contents of different prickly ash species from different plantations. Alkylamide profiling of pericarps derived from Zanthoxylum armatum, Z. bungeanum, and some relative Zanthoxylum species from 72 plantations across China were tested using ultra-performance liquid chromatography. Then, several chemometrics were applied to classify the prickly ash pericarps to reveal potential indicators that distinguish prickly ash pericarps and to identify the key factors that affect pericarp alkylamide profiling. The dominating alkylamides in the prickly ash pericarps were Z. piperitum (ZP)-amide C (0-20.64 mg/g) and ZP-amide D (0-30.43 mg/g). Alkylamide profiling of prickly ash pericarps varied significantly across species and geographical variations. ZP-amide D in prickly ash pericarps was identified as a potential indicator to distinguish prickly ash species. Longitude and aluminum content in soils were identified as key factors that affected alkylamide profiling of prickly ash pericarps. This study provides a useful tool to classify prickly ash species based on pericarp alkylamide profiling and to determine the key influence factors on pericarp alkylamide variations.

3.
Foods ; 9(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207730

RESUMO

Zanthoxylum plants, important aromatic plants, have attracted considerable attention in the food, pharmacological, and industrial fields because of their potential health benefits, and they are easily accessible because of the wild distribution in most parts of China. The chemical components vary with inter and intraspecific variations, ontogenic variations, and climate and soil conditions in compositions and contents. To classify the relationships between different Zanthoxylum species and to determine the key factors that influence geographical variations in the main components of the plant, the fatty acid composition and content of 72 pericarp samples from 12 cultivation regions were measured and evaluated. Four fatty acids, palmitic acid (21.33-125.03 mg/g), oleic acid (10.66-181.37 mg/g), linoleic acid (21.98-305.32 mg/g), and linolenic acid (0.06-218.84 mg/g), were the most common fatty acid components in the Zanthoxylum pericarps. Fatty acid profiling of Zanthoxylum pericarps was significantly affected by Zanthoxylum species and geographical variations. Stearic acid and oleic acid in pericarps were typical fatty acids that distinguished Zanthoxylum species based on the result of DA. Palmitic acid, palmitoleic acid, trans-13-oleic acid, and linoleic acid were important differential indicators in distinguishing given Zanthoxylum pericarps based on the result of OPLS-DA. In different Zanthoxylum species, the geographical influence on fatty acid variations was diverse. This study provides information on how to classify the Zanthoxylum species based on pericarp fatty acid compositions and determines the key fatty acids used to classify the Zanthoxylum species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...