Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 244: 125202, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37270117

RESUMO

Cellulose nanocrystal (CNC) shows great potential in reinforced composites but it is difficult to disperse in epoxy thermosets due to its poor dispersity in epoxy monomers. Herein, we reported a novel approach to disperse CNC in epoxidized soybean oil (ESO)-derived epoxy thermosets uniformly by using the reversibility of dynamic imine-containing ESO-derived covalent adaptable network (CAN). The crosslinked CAN was deconstructed by an exchange reaction with ethylenediamine (EDA) in dimethyl formamide (DMF), leading to a solution of deconstructed CAN with plenty of hydroxyl and amino groups, which could form strong hydrogen bonds with hydroxyl groups of CNC and thus facilitated and stabilized dispersion of CNC in the deconstructed CAN solution. Epoxy composite with well-dispersed CNC was finally achieved by a reformation of CAN through the removal of DMF and EDA. In this way, the epoxy composites with CNC content up to 30 wt% were successfully prepared and showed drastically reinforced mechanical properties. The tensile strength and Young's modulus of the CAN were improved by up to ∼70 % and ∼45 times with the incorporation of 20 and 30 wt% CNC, respectively. The composites showed excellent reprocessability without significant loss in mechanical properties after reprocessing.


Assuntos
Celulose , Nanopartículas , Celulose/química , Resistência à Tração , Módulo de Elasticidade , Nanopartículas/química , Resinas Epóxi
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...