Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 375: 114721, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342180

RESUMO

Plasma microRNA (miR)-9 has been identified as a promising diagnostic biomarker for traumatic brain injury (TBI). This study aims to investigate the possible role and mechanisms of miR-9a-5p affecting TBI. Microarray-based gene expression profiling of TBI was used for screening differentially expressed miRNAs and genes. TBI rat models were established. miR-9a-5p, ELAVL1 and VEGF expression in the brain tissue of TBI rats was detected. The relationship among miR-9a-5p, ELAVL1 and VEGF was tested. TBI modeled rats were injected with miR-9a-5p-, ELAVL1 or VEGF-related sequences to identify their effects on TBI. miR-9a-5p was poorly expressed in the brain tissue of rats with TBI. ELAVL1 was a downstream target gene of miR-9a-5p, which could negatively regulate its expression. Enforced miR-9a-5p expression prevented brain tissue damage in TBI rats by targeting ELAVL1. Meanwhile, ELAVL1 could increase the expression of VEGF, which was highly expressed in the brain tissue of rats with TBI. In addition, ectopically expressed miR-9a-5p alleviated brain tissue damage in TBI rats by downregulating the ELAVL1/VEGF axis. Overall, miR-9a-5p can potentially reduce brain tissue damage in TBI rats by targeting ELAVL1 and down-regulating VEGF expression.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , MicroRNAs , Animais , Ratos , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
2.
Exp Brain Res ; 242(2): 443-449, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147087

RESUMO

The purpose of this study was to identify the target genes of tcon_00044595, elucidate its activation site, and provide novel insights into the pathogenesis and treatment of neonatal hypoxic-ischemic brain damage (HIBD). Through homologous blast analysis, we identified predicted target sequences in the neighboring regions of the long non-coding RNA (lncRNA) tcon_00044595, suggesting that limd1 is its target gene. Starbase was utilized to identify potential candidate microRNAs associated with the lncRNA. The interaction between the candidate microRNAs and limd1 was investigated and validated using various experimental methods including in vitro cell culture, cell transfection, dual fluorescence reporter detection system, and real-time PCR. Homology alignment analysis revealed that the lncRNA tcon_00044595 exhibited a 246 bp homologous sequence at the 3' end of the adjacent limd1 gene, with a conservation rate of 68%. Analysis conducted on Starbase online identified three potential microRNA candidates: miR-3471, miR-883a-5p, and miR-214-3p. Intracellular expression of the limd1 gene was significantly down-regulated upon transfection with miR-3471, while the other two microRNAs did not produce noticeable effects. Luciferase reporter assays identified two interaction sites (UTR-1, UTR-2) between miR-3471 and the limd1 3'UTR, with UTR-1 exhibiting a strong influence. Further CCK8 assay indicated a protective role of miR-3471 during low oxygen stroke in HIBD. The potential regulatory relationship between lncRNA (tcon_00044595), miR-3471, and the target gene limd1 suggests their involvement in the occurrence and development of HIBD, providing new insights for investigating the underlying mechanisms and exploring targeted therapeutic approaches for HIBD.


Assuntos
Hipóxia-Isquemia Encefálica , MicroRNAs , RNA Longo não Codificante , Humanos , Recém-Nascido , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Apoptose , Oxigênio
3.
Sci Rep ; 13(1): 18775, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907561

RESUMO

The present study investigated the composition, abundance, and diversity of gut microbes in full-term and late-preterm infants from a medical center in eastern China. A total of 144 genomes of stool samples were captured for 16S rRNA metagenomic analyses. A high abundance of commensal intestinal bacteria was detected in these samples such as Phocaeicola vulgatus, Escherichia coli, and Faecalibacterium prausnitzii, indicating a relatively consistent diversity of gut microbes in the present full-term infants aged 38-40 weeks. However, late preterm infants (n = 50) with mandatory antimicrobials feeding exhibited lower diversity but a higher composition of opportunistic pathogens such as Enterococcus species. Centralized on the situation, we explored the regulatory effect of Clostridium butyricum as probiotics on these late preterm infants. The consumption of C. butyricum did not restore the composition of gut microbes altered by antimicrobials to normal levels, although several opportunistic pathogens decreased significantly after probiotic therapy including Staphylococcus aureus, Sphingomonas echinoides, and Pseudomonas putida. We also compared the effects of day-fed versus night-fed probiotics. Intriguingly, the nighttime feeding showed a higher proportion of C. butyricum compared with probiotic day-feeding. Finally, fecal metabolome and metabolites were analyzed in late preterm infants with (n = 20) or without probiotic therapy (n = 20). The KEGG enrichment analysis demonstrated that vitamin digestion and absorption, synaptic vesicle cycle, and biotin metabolism were significantly increased in the probiotic-treated group, while MSEA indicated that a series of metabolism were significantly enriched in probiotic-treated infants including glycerolipid, biotin, and lysine, indicating the complex effects of probiotic therapy on glutathione metabolism and nutrients digestion and absorption in late preterm infants. Overall, this study provided metagenomic and metabolomic profile of the gut microbes in full-term newborns and late preterm infants in eastern China. Further studies are needed to support and elucidate the role of probiotic feeding in late preterm infants with mandatory antimicrobial treatment.


Assuntos
Clostridium butyricum , Microbioma Gastrointestinal , Probióticos , Humanos , Recém-Nascido , Lactente , Recém-Nascido Prematuro , Clostridium butyricum/genética , RNA Ribossômico 16S/genética , Biotina/farmacologia , População do Leste Asiático
4.
Mol Neurobiol ; 60(8): 4429-4441, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37100971

RESUMO

Microglia mediated inflammation plays a crucial role in cellular events and functional recovery post ischemic stroke. In the current study, we profiled the proteome changes of microglia treated with oxygen and glucose deprivation (OGD). Bioinformatics analysis identified that differentially expressed proteins (DEPs) were enriched in pathways associated with oxidate phosphorylation and mitochondrial respiratory chain at both 6h and 24h post OGD. We next focused on one validated target named endoplasmic reticulum oxidoreductase 1 alpha (ERO1a) to study its role in stroke pathophysiology. We showed that over-expression of microglial ERO1a exacerbated inflammation, cell apoptosis and behavioral outcomes post middle cerebral artery occlusion (MCAO). In contrast, suppression of microglial ERO1a significantly reduced activation of both microglia and astrocyte, along with cell apoptosis. Furthermore, knocking down microglial ERO1a improved the efficacy of rehabilitative training and enhanced the mTOR activity in spared corticospinal neurons. Our study provided novel insights into the identification of therapeutic targets and the design of rehabilitative protocols to treat ischemic stroke and other traumatic CNS injuries.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Microglia/metabolismo , Isquemia Encefálica/metabolismo , AVC Isquêmico/metabolismo , Acidente Vascular Cerebral/metabolismo , Infarto da Artéria Cerebral Média/complicações , Inflamação/metabolismo
5.
Front Pediatr ; 10: 745423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304529

RESUMO

Delayed exchange transfusion therapy (ETT) after phototherapy failure for newborns with severe hyperbilirubinemia could lead to serious complications such as bilirubin encephalopathy (BE). In this current manuscript we developed and validated a model using admission data for early prediction of phototherapy failure. We retrospectively examined the medical records of 292 newborns with severe hyperbilirubinemia as the training cohort and another 52 neonates as the validation cohort. Logistic regression modeling was employed to create a predictive model with seven significant admission indicators, i.e., age, past medical history, presence of hemolysis, hemoglobin, neutrophil proportion, albumin (ALB), and total serum bilirubin (TSB). To validate the model, two other models with conventional indicators were created, one incorporating the admission indicators and phototherapy failure outcome and the other using TSB decrease after phototherapy failure as a variable and phototherapy outcome as an outcome indicator. The area under the curve (AUC) of the predictive model was 0.958 [95% confidence interval (CI): 0.924-0.993] and 0.961 (95% CI: 0.914-1.000) in the training and validation cohorts, respectively. Compared with the conventional models, the new model had better predictive power and greater value for clinical decision-making by providing a possibly earlier and more accurate prediction of phototherapy failure. More rapid clinical decision-making and interventions may potentially minimize occurrence of serious complications of severe neonatal hyperbilirubinemia.

6.
Front Cell Dev Biol ; 10: 794012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350377

RESUMO

Neonatal hypoxic-ischemic brain damage (HIBD) often results in various neurological deficits. Among them, a common, yet often neglected, symptom is circadian rhythm disorders. Previous studies revealed that the occurrence of cysts in the pineal gland, an organ known to regulate circadian rhythm, is associated with circadian problems in children with HIBD. However, the underlying mechanisms of pineal dependent dysfunctions post HIBD remain largely elusive. Here, by performing 10x single cell RNA sequencing, we firstly molecularly identified distinct pineal cell types and explored their transcriptome changes at single cell level at 24 and 72 h post neonatal HIBD. Bioinformatic analysis of cell prioritization showed that both subtypes of pinealocytes, the predominant component of the pineal gland, were mostly affected. We then went further to investigate how distinct pineal cell types responded to neonatal HIBD. Within pinealocytes, we revealed a molecularly defined ß to α subtype conversion induced by neonatal HIBD. Within astrocytes, we discovered that all three subtypes responded to neonatal HIBD, with differential expression of reactive astrocytes markers. Two subtypes of microglia cells were both activated by HIBD, marked by up-regulation of Ccl3. Notably, microglia cells showed substantial reduction at 72 h post HIBD. Further investigation revealed that pyroptosis preferentially occurred in pineal microglia through NLRP3-Caspase-1-GSDMD signaling pathway. Taken together, our results delineated temporal changes of molecular and cellular events occurring in the pineal gland following neonatal HIBD. By revealing pyroptosis in the pineal gland, our study also provided potential therapeutic targets for preventing extravasation of pineal pathology and thus improving circadian rhythm dysfunction in neonates with HIBD.

7.
BMC Pediatr ; 21(1): 410, 2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537048

RESUMO

BACKGROUND: While great attention has been paid to motor and cognitive impairments in children with neonatal Hypoxic-Ischemic Encephalopathy (HIE), sleep related circadian rhythm problems, although commonly present, are often neglected. Subsequently, no early clinical indicators have been reported to correlate with sleep-related circadian dysfunction during development. METHODS: In this study, we first analyzed patterns of the amplitude integrated electroencephalogram (aEEG) in a cohort of newborns with various degrees of HIE. Next, during follow-ups, we collected information of sleep and circadian related problems in these patients and performed correlation analysis between aEEG parameters and different sleep/circadian disorders. RESULTS: A total of 101 neonates were included. Our results demonstrated that abnormal aEEG background pattern is significantly correlated with circadian rhythmic (r = 0.289, P = 0.01) and breathing issues during sleep (r = 0.237, P = 0.037). In contrast, the establishment of sleep-wake cycle (SWC) showed no correlation with sleep/circadian problems. Detailed analysis showed that summation of aEEG score, along with low base voltage (r = 0.272, P = 0.017 and r = -0.228, P = 0.048, respectively), correlates with sleep circadian problems. In contrast, background pattern (BP) score highly correlates with sleep breathing problem (r = 0.319, P = 0.004). CONCLUSION: Abnormal neonatal aEEG pattern is correlated with circadian related sleep problems. Our study thus provides novel insights into predictive values of aEEG in sleep-related circadian problems in children with HIE.


Assuntos
Hipóxia-Isquemia Encefálica , Transtornos do Sono-Vigília , Criança , Eletroencefalografia , Humanos , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/diagnóstico , Recém-Nascido , Isquemia , Sono , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/etiologia
8.
Biochem Biophys Res Commun ; 528(1): 1-6, 2020 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448507

RESUMO

A common, yet often neglectable, feature of neonatal hypoxic-ischemic brain damage (HIBD) is circadian rhythm disorders resulted from pineal gland dysfunction. Our previous work demonstrated that miRNAs play an important role in regulating key circadian genes in the pineal gland post HIBD [5,21]. In current study, we sought out to extend our investigation by profiling expression changes of pineal long non-coding RNAs (lncRNAs) upon neonatal HIBD using RNA-Seq. After validating lncRNA changes, we showed that one lncRNA: TCONS_00044595 is highly enriched in the pineal gland and exhibits a circadian expression pattern. Next, we performed bioinformatic analysis to predict the lncRNA-miRNA regulatory network and identified 168 miRNAs that potentially targetlncRNA TCONS_00044595. We further validated the bona fide interaction between one candidate miRNA: miR-182, a known factor to regulate pineal Clock expression, and lncRNA TCONS_00044595. Finally, we showed that suppression of lncRNA TCONS_00044595 alleviated the CLOCK activation both in the cultured pinealocytes under OGD conditions and in the pineal gland post HIBD in vivo. Our study thus shed light into novel mechanisms of pathophysiology of pineal dysfunction post neonatal HIBD.


Assuntos
Proteínas CLOCK/genética , Regulação da Expressão Gênica , Hipóxia-Isquemia Encefálica/genética , Glândula Pineal/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Animais Recém-Nascidos , Sequência de Bases , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Hipóxia-Isquemia Encefálica/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...