Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 11(5): uhae086, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799127

RESUMO

Fruit ripening is manipulated by the plant phytohormone ethylene in climacteric fruits. While the transcription factors (TFs) involved in ethylene biosynthesis and fruit ripening have been extensively studied in tomato, their identification in pear remains limited. In this study, we identified and characterized a HOMEODOMAIN TF, PbHB.G7.2, through transcriptome analysis. PbHB.G7.2 could directly bind to the promoter of the ethylene biosynthetic gene, 1-aminocyclopropane-1-carboxylic acid synthase (PbACS1b), thereby enhancing its activity and resulting in increased ethylene production during pear fruit ripening. Yeast-two-hybrid screening revealed that PbHB.G7.2 interacted with PbHB.G1 and PbHB.G2.1. Notably, these interactions disrupted the transcriptional activation of PbHB.G7.2. Interestingly, PbHB.G1 and PbHB.G2.1 also bind to the PbACS1b promoter, albeit different regions from those bound by PbHB.G7.2. Moreover, the regions of PbHB.G1 and PbHB.G2.1 involved in their interaction with PbHB.G7.2 differ from the regions responsible for binding to the PbACS1b promoter. Nonetheless, these interactions also disrupt the transcriptional activation of PbHB.G1 and PbHB.G2.1. These findings offer a new mechanism of ethylene biosynthesis during climacteric fruit ripening.

2.
J Agric Food Chem ; 72(3): 1571-1581, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206573

RESUMO

Chinese chestnut (Castanea mollissima BL.) is a well-known fruit tree that has been cultivated in East Asia for millennia. Leaves and buds of the plant can become seriously infested by the gall wasp Dryocosmus kuriphilus (GWDK), which results in gall formation and associated significant losses in fruit production. Herbivore-induced terpenes have been reported to play an important role in plant-herbivory interactions, and in this study, we show that upon herbivory by GWDK, four terpene-related compounds were significantly induced, while the concentrations of these four compounds in intact buds were relatively low. Among these compounds, (E)-nerolidol and (E, E)-α-farnesene have frequently been reported to be involved in plant herbivory defenses, which suggests direct and/or indirect functions in chestnut GWDK defenses. Candidate terpene synthase (TPS) genes that may account for (E)-nerolidol and (E, E)-α-farnesene terpene biosynthesis were characterized by transcriptomics and phylogenetic approaches, which revealed altered transcript levels for two TPSs: CmAFS, a TPS-g subfamily member, and CmNES/AFS, a TPS-b clade member. Both genes were dramatically upregulated in gene expression upon GWDK infestation. Furthermore, Agrobacterium tumefaciens-mediated transient overexpression in Nicotiana benthamiana showed that CmAFS catalyzed the formation of (E, E)-α-farnesene, while CmNES/AFS showed dual (E)-nerolidol and (E, E)-α-farnesene synthase activity. Biochemical assays of the recombinant CmAFS and CmNES/AFS proteins confirmed their catalytic activity in vitro, and the enzymatic products were consistent with two of the major volatile compounds released upon GWDK-infested chestnut buds. Subcellular localization demonstrated that CmAFS and CmNES/AFS were both localized in the cytoplasm, the primary compartment for sesquiterpene synthesis. In summary, we show that two novel sesquiterpene synthase genes CmAFS and CmNES/AFS are inducible by herbivory and can account for the elevated accumulation of (E, E)-α-farnesene and (E)-nerolidol upon GWDK infestation and may be implicated in chestnut defense against GWDK herbivores.


Assuntos
Alquil e Aril Transferases , Sesquiterpenos , Vespas , Animais , Filogenia , Sesquiterpenos/metabolismo , Terpenos/química , Óxido Nítrico Sintase , China
3.
Food Chem ; 418: 135963, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36944308

RESUMO

Aroma is one of the most important sensory characteristics of fruit quality. Here, the aroma composition of mature fruits of 202 pear cultivars was detected by headspace solid-phase microextraction (HS-SPME) with gas chromatography-mass spectrometry (GC-MS). As a result, 221 major volatile components were detected, among which aldehydes, esters and alcohols were the most dominant aroma components. We also found Pyrus communis L. had the highest volatile content, followed by Pyrus sinkiangensis Yu, Pyrus ussuriensis Maxim., Pyrus bretschneideri Rehd., Hybrid Breeding cultivar group, Chinese sand pears (Pyrus pyrifolia Nakai), and Japanese and Korean (J&K) sand pears (Pyrus pyrifolia Nakai). In addition, the aroma composition and contents varied greatly among the different ripening-period groups. Finally, the fruits of pear germplasms also showed geographical flavor characteristics. These basic data and results could help us better understanding the variations of aroma quality among pear varieties and promote the development of pear breeding program.


Assuntos
Pyrus , Compostos Orgânicos Voláteis , Pyrus/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Melhoramento Vegetal , Álcoois/análise , Frutas/química , Odorantes/análise , Compostos Orgânicos Voláteis/análise
4.
J Clin Neurosci ; 106: 122-127, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36283344

RESUMO

BACKGROUND: Treatment of acute ischemic stroke (AIS) with intravenous tissue-type plasminogen activator is effective in few patients when administered within 4.5 h after symptom onset. Hemorrhage transformation (HT) is a major cause of poor prognosis of AIS patients post intravenous rt-PA. Several studies report that high-density lipoprotein (HDL) cholesterol is associated with increased risk of HT. However, various studies report inconsistent results. OBJECTIVE: The aim of the present study was to explore the association between HDL and HT after treatment of AIS patients by intravenous thrombolysis. METHODS: A literature search for studies on the relationship between HDL and HT after treatment of AIS by intravenous thrombolysis published before, 28 Mar 2022, was conducted in PubMed, EMBASE, Cochrane, Web of Science, CNKI, CPVIP, Wan fang and SINOMED databases. Fixed effects model was used to estimate the mean differences (MDs) at 95% confidence interval (CI). Heterogeneity was assessed by Cochran's Q statistic and quantified by the I2 statistic. Analysis of included studies was carried out using Review Manager 5.4 and the publication bias was evaluated using Stata 16.0. RESULTS: A total of 445 studies were screened and 9 studies met the inclusion criteria and were included in this meta-analysis (n = 3673). The results showed that AIS patients with HT had significantly higher HDL concentrations compared with the AIS patients without HT (pooled mean difference, 0.05; 95% confidence interval (CI), 0.01-0.09; P = 0.008). CONCLUSION: The findings showed that HDL was associated with HT after treatment of AIS by intravenous thrombolysis, implying that is a potential predictor of the risk of HT.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Humanos , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Hemorragia Cerebral/etiologia , HDL-Colesterol , Fibrinolíticos/efeitos adversos , AVC Isquêmico/complicações , AVC Isquêmico/tratamento farmacológico , Terapia Trombolítica/efeitos adversos , Terapia Trombolítica/métodos , Ativador de Plasminogênio Tecidual/efeitos adversos
5.
Food Chem (Oxf) ; 5: 100129, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36060474

RESUMO

Sesquiterpenes are important defensive secondary metabolites and aroma components. However, limited information is available on the mechanism of sesquiterpene formation and composition in the non-heading Chinese cabbage (NHCC) leaf. Therefore, headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) combined with transcriptome analysis was used to study the mechanism of volatile organic compound formation. A total of 26 volatile organic compounds were identified in two NHCC cultivars 'SZQ' and 'XQC' and their F1 hybrids. Among these, sesquiterpene ß-caryophyllene was identified only in 'XQC' and F1. Five genes encoding caryophyllene synthase were identified. The candidate ß-caryophyllene synthase genes BcTPSa11 and BcTPSa21 had high expression levels only in 'XQC' and F1. In addition, several transcription factors of MYB-related, MYB, bHLH, and AP2/ERF families were identified by co-expression, suggesting that they regulate ß-caryophyllene biosynthesis. Our results provide a molecular basis for sesquiterpene biosynthesis as well as insights into the regulatory network of ß-caryophyllene in NHCC.

6.
Trends Genet ; 38(10): 999-1002, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35853768

RESUMO

Genome-wide studies of DNA G- and C-quadruplexes (G4s and i-motifs, respectively) can boost the pace of progress towards a comprehensive understanding of their biological implications and practical applications in plants. We summarize the current state of knowledge about omics studies in order to highlight the current challenges and propose future directions to take studies of plant quadruplexes to the next step.


Assuntos
Quadruplex G , DNA/genética , Plantas/genética
7.
Mediators Inflamm ; 2022: 2078520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633654

RESUMO

Objective: The relative contribution of some products with prebiotic effects, such as inulin, together with medications specific to the human gut microbiome has not been comprehensively studied. The present study determined the potential for manipulating populations in the gut microbiome using inulin alone and combined with other agents in individuals with metabolic syndrome (MetS). The study also assessed whether there is relationship variability in multiple clinical parameters in response to intervention with the changes in the gut milieu. Participants/Methods. This single-centre, single-blinded, randomised community-based pilot trial randomly assigned 60 patients (mean age, 46.3 y and male, 43%) with MetS to receive either inulin, inulin+traditional Chinese medicine (TCM), or inulin+metformin for 6 months. Lipid profiles, blood glucose, and uric acid (UA) levels were analysed in venous blood samples collected after overnight fast of 8 h at baseline and at the end of the follow-up period. Microbiota from stool samples were taxonomically analysed using 16S RNA amplicon sequencing, and an integrative analysis was conducted on microbiome and responsiveness data at 6 months. Results: The results of 16S rRNA sequencing showed that inulin resulted in a higher proportion of Bacteroides at the endpoint compared with inulin+TCM and inulin+metformin (p = 0.024). More Romboutsia (p = 0.043), Streptococcus (p < 0.001), and Holdemanella (p = 0.011) were found in inulin+TCM and inulin+metformin samples. We further identified gut microbiota relationships with lipids, UA, and glucose that impact the development of MetS. Conclusion: Among the groups, inulin alone or combined with metformin or TCM altered specific gut microbiota taxa but not the general diversity. Accordingly, we analysed metabolites associated with microbiota that might provide more information about intrinsic differences. Consequently, a reliable method could be developed for treating metabolic syndrome in the future.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Metformina , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Inulina/metabolismo , Inulina/uso terapêutico , Masculino , Síndrome Metabólica/tratamento farmacológico , Metformina/uso terapêutico , Pessoa de Meia-Idade , Projetos Piloto , RNA Ribossômico 16S , Fatores de Risco
8.
Front Nutr ; 8: 817796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35028308

RESUMO

Cuticular wax covering the surface of fleshy fruit is closely related to fruit glossiness, development, and post-harvest storage quality. However, the information about formation characteristics and molecular mechanisms of cuticular wax in grape berry is limited. In this study, crystal morphology, chemical composition, and gene expression of cuticular wax in grape berry were comprehensively investigated. Morphological analysis revealed high density of irregular lamellar crystal structures, which were correlated with the glaucous appearances of grape berry. Compositional analysis showed that the dominant wax compounds were triterpenoids, while the most diverse were alkanes. The amounts of triterpenoids declined sharply after véraison, while those of other compounds maintained nearly constant throughout the berry development. The amounts of each wax compounds varied among different cultivars and showed no correlation with berry skin colors. Moreover, the expression profiles of related genes were in accordance with the accumulation of wax compounds. Further investigation revealed the contribution of cuticular wax to the water preservation capacity during storage. These findings not only facilitate a better understanding of the characteristics of cuticular wax, but also shed light on the molecular basis of wax biosynthesis in grape.

9.
BMC Genomics ; 15: 838, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25273845

RESUMO

BACKGROUND: Cotton fiber, a highly elongated, thickened single cell of the seed epidermis, is a powerful cell wall research model. Fiber length, largely determined during the elongation stage, is a key property of fiber quality. Several studies using expressed sequence tags and microarray analysis have identified transcripts that accumulate preferentially during fiber elongation. To further show the mechanism of fiber elongation, we used Digital Gene Expression Tag Profiling to compare transcriptome data from longer fiber chromosome introgressed lines (CSILs) containing segments of various Gossypium barbadense chromosomes with data from its recurrent parent TM-1 during fiber elongation (from 5 DPA to 20 DPA). RESULTS: A large number of differentially expressed genes (DEGs) involved in carbohydrate, fatty acid and secondary metabolism, particularly cell wall biosynthesis, were highly upregulated during the fiber elongation stage, as determined by functional enrichment and pathway analysis. Furthermore, DEGs related to hormone responses and transcription factors showed upregulated expression levels in the CSILs. Moreover, metabolic and regulatory network analysis indicated that the same pathways were differentially altered, and distinct pathways exhibited altered gene expression, in the CSILs. Interestingly, mining of upregulated DEGs in the introgressed segments of these CSILs based on D-genome sequence data showed that these lines were enriched in glucuronosyltransferase, inositol-1, 4, 5-trisphosphate 3-kinase and desulfoglucosinolate sulfotransferase activity. These results were similar to the results of transcriptome analysis. CONCLUSIONS: This report provides an integrative network about the molecular mechanisms controlling fiber length, which are mainly tied to carbohydrate metabolism, cell wall biosynthesis, fatty acid metabolism, secondary metabolism, hormone responses and Transcription factors. The results of this study provide new insights into the critical factors associated with cell elongation and will facilitate further research aimed at understanding the mechanisms underlying cotton fiber elongation.


Assuntos
Cromossomos de Plantas/genética , Fibra de Algodão , Perfilação da Expressão Gênica , Gossypium/anatomia & histologia , Gossypium/genética , Hibridização Genética , Parede Celular/metabolismo , Análise por Conglomerados , Ontologia Genética , Genes de Plantas/genética , Gossypium/citologia , Gossypium/metabolismo , Metabolismo dos Lipídeos/genética , Anotação de Sequência Molecular , Fatores de Transcrição/metabolismo
10.
PLoS One ; 9(4): e94642, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24762562

RESUMO

Fiber strength is the key trait that determines fiber quality in cotton, and it is closely related to secondary cell wall synthesis. To understand the mechanism underlying fiber strength, we compared fiber transcriptomes from different G. barbadense chromosome introgression lines (CSILs) that had higher fiber strengths than their recipient, G. hirsutum acc. TM-1. A total of 18,288 differentially expressed genes (DEGs) were detected between CSIL-35431 and CSIL-31010, two CSILs with stronger fiber and TM-1 during secondary cell wall synthesis. Functional classification and enrichment analysis revealed that these DEGs were enriched for secondary cell wall biogenesis, glucuronoxylan biosynthesis, cellulose biosynthesis, sugar-mediated signaling pathways, and fatty acid biosynthesis. Pathway analysis showed that these DEGs participated in starch and sucrose metabolism (328 genes), glycolysis/gluconeogenesis (122 genes), phenylpropanoid biosynthesis (101 genes), and oxidative phosphorylation (87 genes), etc. Moreover, the expression of MYB- and NAC-type transcription factor genes were also dramatically different between the CSILs and TM-1. Being different to those of CSIL-31134, CSIL-35431 and CSIL-31010, there were many genes for fatty acid degradation and biosynthesis, and also for carbohydrate metabolism that were down-regulated in CSIL-35368. Metabolic pathway analysis in the CSILs showed that different pathways were changed, and some changes at the same developmental stage in some pathways. Our results extended our understanding that carbonhydrate metabolic pathway and secondary cell wall biosynthesis can affect the fiber strength and suggested more genes and/or pathways be related to complex fiber strength formation process.


Assuntos
Cromossomos de Plantas/genética , Gossypium/metabolismo , Transcriptoma , Parede Celular/genética , Parede Celular/metabolismo , Fibra de Algodão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Gossypium/citologia , Fenômenos Mecânicos , Fenótipo , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...