Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(17): 7335-7345, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626301

RESUMO

Interfacial solar vapor generation (ISVG) is an emerging technology to alleviate the global freshwater crisis. However, high-cost, low freshwater collection rate, and salt-blockage issues significantly hinder the practical application of solar-driven desalination devices based on ISVG. Herein, with a low-cost copper plate (CP), nonwoven fabric (NWF), and insulating ethylene-vinyl acetate foam (EVA foam), a multistage device is elaborately fabricated for highly efficient simultaneous freshwater and salt collection. In the designed solar-driven device, a superhydrophobic copper plate (SH-CP) serves as the condensation layer, facilitating rapid mass and heat transfer through dropwise condensation. Moreover, the hydrophilic NWF is designed with rational hydrophobic zones and specific high-salinity solution outlets (Design-NWF) to act as the water evaporation layer and facilitate directional salt collection. As a result, the multistage evaporator with eight stages exhibits a high water collection rate of 2.25 kg m-2 h-1 under 1 sun irradiation. In addition, the desalination device based on the eight-stage evaporator obtains a water collection rate of 13.44 kg m-2 and a salt collection rate of 1.77 kg m-2 per day under natural irradiation. More importantly, it can maintain a steady production for 15 days without obvious performance decay. This bifunctional multistage device provides a feasible and efficient approach for simultaneous desalination and solute collection.


Assuntos
Água Doce , Luz Solar , Salinidade , Purificação da Água
2.
Materials (Basel) ; 15(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36079298

RESUMO

The dilemma of diminishing freshwater resources caused by water pollution has always impacted human life. Solar-driven interfacial evaporation technology has the potential for freshwater production via solar-driven distillation. However, in solar-driven interfacial evaporation technology, it is difficult to overcome the problem of wastewater containing various contaminants. In this work, we propose a bifunctional fabric created by depositing titanium dioxide@carbon black nanoparticles onto cotton fabric (TiO2@CB/CF). The TiO2@CB/CF has a coupling effect that includes the photothermal effect of CB and photocatalysis of TiO2, and it can not only generate clean water but can also purify contaminated water. The resulting bifunctional fabric can achieve an outstanding water evaporation rate of 1.42 kg m-2 h-1 and a conversion efficiency of 90.4% in methylene blue (MB) solution under one-sun irradiation. Simultaneously, the TiO2@CB/CF demonstrates a high photocatalytic degradation of 57% for MB solution after 2 h with light irradiation. It still shows a good photocatalysis effect, even when reused in an MB solution for eight cycles. Furthermore, the TiO2@CB/CF delivers excellent performance for actual industrial textile dyeing wastewater. This bifunctional fabric has a good application prospect and will provide a novel way to resolve the issue of freshwater scarcity.

3.
Colloids Surf B Biointerfaces ; 208: 112080, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34481247

RESUMO

The paper describes the preparation of a porous bombyx mori silk fibroin (SF)/wool keratin (WK) composite scaffold with mimic structure and function for cartilage tissue engineering. A porous composite scaffold made from SF/WK in an appropriate concentration and mass ratio was prepared using a freeze-drying technique. Results showed that the composite scaffolds are water-insoluble; possess good mechanical properties, porosity above 80%, and pore size above 200 µm. Larger pore size and better connectivity of the composite scaffold than the pure SF scaffolds were contributed by the WK addition. The heat resistance and water-swelling of WK enhanced the thermal and mechanical properties of the composite scaffolds. In vitro cytotoxicity assessments showed cells with a good growth state, confirming no toxicity to the cells. The results of in vivo biocompatibility assessments exhibited that there is almost no inflammatory response in the implantation site tissue of the rats. The development of porous SF/WK composite scaffold has the potential in cartilage tissue engineering.


Assuntos
Bombyx , Fibroínas , Animais , Materiais Biocompatíveis , Queratinas , Porosidade , Ratos , Seda , Engenharia Tecidual , Alicerces Teciduais ,
4.
J Sep Sci ; 44(19): 3594-3599, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34365729

RESUMO

Stable carbon and hydrogen isotope ratios of individual n-alkanes and acyclic isoprenoids are important tools in petroleum geochemistry. However, the analysis requires baseline separation and peak profiles using gas chromatography-isotope ratio mass spectrometry to obtain accurate compound-specific isotope data. Time-consuming isolation or purification is typically conducted to separate the compounds to avoid co-elution with other compounds or matrices in crude oils. We developed a simple gas chromatography separation method to simultaneously measure the compound-specific carbon or hydrogen isotope compositions of n-alkanes and acyclic isoprenoids. It was achieved by direct injection of the whole crude condensate and light oil or the saturated fractions of different types of crude oils using a 60 m DB-17ms column. This method simplifies the pre-treatment of compound-specific isotope analysis, saves manpower and time, and reduces the use of organic solvents to be more environmentally friendly.

5.
Environ Sci Technol ; 55(11): 7731-7740, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34003641

RESUMO

In this study, the carbon and chlorine isotope fractionation during ultraviolet-photolysis of polychlorinated biphenyls (PCBs, including PCB18, PCB77, PCB110, and PCB138) in n-hexane (Hex), methanol/water (MeOH/H2O), and silica gel was first investigated to explore their mechanistic processes. We observed a significant variation in ΛCl-C (εCl/εC) for the same PCBs in different photochemical systems, implying that PCB degradation processes in various photoreaction systems could differ. Although all substrates showed normal apparent carbon/chlorine kinetic isotope effects (C-/Cl-AKIE >1), the putative inverse C-AKIE of nondechlorinated pathways was suggested by 13C depletion of the average carbon isotope composition of PCB138 and corresponding dechlorinated products in MeOH/H2O, which might originate from the magnetic isotope effect. Significant negative correlations were found between C-AKIE and relative disappearance quantum yields ("Φ") of ortho-dechlorinated substrates (PCB18, PCB110, and PCB138) in Hex and MeOH/H2O. However, the C-AKIE and "Φ" of PCB77 (meta/para-dechlorinated congener) obviously deviated from the above correlations. Furthermore, significantly different product-related carbon isotope enrichment factors of PCB77 in Hex were found. These results demonstrated the existence of dechlorination position-specific and masking effects in carbon isotope fractionations.


Assuntos
Bifenilos Policlorados , Carbono , Isótopos de Carbono , Fracionamento Químico , Cloro
6.
Environ Sci Technol ; 55(14): 9450-9459, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33754718

RESUMO

An increasing number of alternative flame retardants (FRs) are being introduced, following the international bans on the use of polybrominated diphenyl ether (PBDE) commercial mixtures. FRs' production capacity has shifted from developed countries to developing countries, with China being the world's largest producer and consumer of FRs. These chemicals are also imported with e-waste to China. Therefore, it is important to understand the current status of regulated brominated FRs, their phase-out in China, and their replacement by alternatives. In this study, a broad suite of legacy and alternative FRs, including eight PBDEs, six novel brominated FRs (NBFRs), two dechlorane plus variants (DPS), and 12 organophosphate FRs (OPFRs) were evaluated in the air of 10 large Chinese cities in 2018. OPFRs are the most prevalent FRs in China, exhibiting a wide range of 1-612 ng/m3, which is several orders of magnitude higher than PBDEs (1-1827 pg/m3) and NBFRs (1-1428 pg/m3). BDE 209 and DBDPE are the most abundant compounds in brominated FRs (>80%). The North China Plain (NCP, excluding Beijing), Guangzhou, and Lanzhou appear to be three hotspots, although with different FR patterns. From 2013/2014 to 2018, levels of PBDEs, NBFRs, and DPs have significantly decreased, while that of OPFRs has increased by 1 order of magnitude. Gas-particle partitioning analysis showed that FRs could have not reached equilibrium, and the steady-state model is better suited for FRs with a higher log KOA (>13). To facilitate a more accurate FR assessment in fine particles, we suggest that, in addition to the conventional volumetric concentration (pg/m3), the mass-normalized concentration (pg/g PM2.5) could also be used.


Assuntos
Retardadores de Chama , China , Cidades , Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Organofosfatos
7.
J Mass Spectrom ; 56(3): e4710, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33638311

RESUMO

Copal resin and amber from Columbia were analysed by negative-ion electrospray ionisation (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), with particular focus on polar compounds with relatively high molecular weights. A total of 4038 and 2755 compounds were identified between m/z 150 and 1,000 in the spectra of the copal resin and amber DCM extracts, respectively. The CHO classes were the most abundant species in the detected polar compounds. The petrochemical process of converting copal resin to amber is accompanied by evaporation and dispersion of volatile molecules and polymerisation of relatively smaller molecules. Thus, the most abundant compounds in copal resin comprised more than one C5 basic unit compared to amber, and the relative abundances of compounds with a high number of carbon and oxygen atoms in amber were higher than those in copal resin. There were strong positive correlations between the double-bond equivalence (DBEav ) values and the number of oxygen atoms in both samples. The slopes and y-intercepts of the linear relationship indicated that the C5 pentadienoic acid is the basic structure of heteroatom compound molecules in copal resin and amber. FT-ICR MS analysis focuses on the characterisation of heteroatom compounds with relatively high molecular weight and is helpful to provide supplementary information on the origin and evolution of complex organic mixtures such as copal resin and amber at the molecular level in a fast and convenient way.

8.
Chemosphere ; 266: 128950, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33218726

RESUMO

In the present study, carbon isotope effects were investigated during the photodegradation of polybrominated diphenyl ethers (PBDEs) by compound-specific stable isotope analysis (CSIA). Five PBDE congeners (BDE 85, 99, 100, 153 and 154) in n-hexane were individually exposed to simulated sunlight for as long as 15 h, except for BDE 100 (24 h). Consecutive debromination of PBDE by photolysis in n-hexane was confirmed by the clear 13C enrichment of mother congeners and successive depletion of δ13C values for the photodegradation products with decreasing degree of bromination, which can be attributed to mass-dependent isotope fractionation. The observed variation in the isotope fractionation trends for the para-debrominated products might be linked to the different photocatalytic activities of the PBDE congeners. Higher fractionation was observed for penta-BDEs (εc=-2.2 ± 0.45‰ and -2.3 ± 0.26‰ for BDE 85 and BDE 99, respectively) compared to that for hexa-BDEs (εc=-1.7 ± 0.41‰, and -1.3 ± 0.12‰ for BDE 153 and BDE 154, respectively). Normal isotope effects (AKIE > 1) observed in our study supports the utility of CSIA for the evaluation of the photodegradation of PBDEs.


Assuntos
Éteres Difenil Halogenados , Bifenil Polibromatos , Isótopos de Carbono , Fotólise , Luz Solar
9.
Sci Total Environ ; 755(Pt 2): 142590, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33059143

RESUMO

As one of the most important natural transformation processes, photodegradation deserves more attention and research. In the current work, we comprehensively explored the photochemical behaviors of polychlorinated biphenyls (PCBs) in n-hexane (Hex), methanol/water, and silica gel under UV-irradiation. Photodegradation rates were found to be faster in methanol/water than in Hex. All of the three photochemical systems generated sigmatropic rearrangement products. The dominant photodegradation pathways were dechlorination, dechlorination/methoxylation/hydroxylation, and hydroxylation in Hex, methanol/water, and silica gel systems, respectively. Furthermore, some new photodegradation products, such as polychlorinated biphenyl ethers, polychlorinated dibenzofurans, polychlorinated biphenylenes, and methylated polychlorinated biphenyls, are reported for the first time. These findings would provide deeper insight into the phototransformation behaviors of PCBs.

10.
J Chromatogr A ; 1634: 461715, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33221653

RESUMO

A compound-specific chlorine/bromine isotope analysis (Cl-/Br-CSIA) method was developed using gas chromatography-quadrupole mass spectrometry for polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), which are toxic to human health and are frequently detected in various abiotic and biotic media. For PCB congeners, the molecular ion method for a concentration of 0.5-10.0 ppm, a dwell time of 20-100 ms, a relative EM voltage of 200 V, an electric current of 34 µA, and an ionization energy of 70 eV was determined as the most suitable scheme, which obtained standard deviations (SDs) of chlorine isotope ratios ranging from 0.00008 to 0.00068. As for the PBDE congeners, the lowest SDs, ranging from 0.00050 to 0.00172, were determined using the top four ion method with a concentration of 5-10 ppm and a dwell time of 20-50 ms. Both the chlorine and bromine isotope ratios showed strong concentration dependencies. Therefore, external standardization or detecting chlorine and bromine isotope ratios at a uniform concentration level is necessary to eliminate the concentration effect. In addition, 13C-correction is critical to remove interference from carbon isotopes. This newly developed Cl-/Br-CSIA method successfully determined the chlorine/bromine isotope ratios of PCBs/PBDEs in technical mixtures and traced the chlorine/bromine isotope ratio variations of PCBs/PBDEs in photodegradation experiments, thereby suggesting that it is a promising tool for assessing the sources and transformation processes of PCBs and PDBEs in the environment.


Assuntos
Poluentes Ambientais/análise , Cromatografia Gasosa-Espectrometria de Massas , Éteres Difenil Halogenados/análise , Bifenilos Policlorados/análise , Bromo/análise , Bromo/química , Cloro/análise , Cloro/química , Poluentes Ambientais/química , Éteres Difenil Halogenados/química , Humanos , Isótopos/análise , Isótopos/química , Bifenil Polibromatos/análise , Bifenilos Policlorados/química
11.
Water Res ; 182: 115977, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32619684

RESUMO

Comprehensive monitoring is crucial for tracing micropollutants in the natural environment. To better evaluate the sources and natural attenuation of polychlorinated biphenyls (PCBs), three composite sediment cores were sampled from a closed pond near e-waste recycling plants, and a multiple-line-of-evidence approach (MLEA) including quantification, enantiomer analysis, microbial community profiling, and compound-specific isotope analysis (CSIA) was used to investigate the fate of PCBs in sediment cores. The difference in the maximum PCB concentrations and associated depths between sites 1/2 and 3 and the corresponding significant (p < 0.01) difference in δ13C values strongly indicated two different PCB inputs at sites 1/2 and 3. A significant (p < 0.01) negative correlation between the variation in chlorine per biphenyl (CPB) and Log the abundance of Dehalococcoides/total molar concentration of PCBs (Log Dhc/TPCB) along the cores suggested that different degrees of PCB degradation occurred and that Dehalococcoides likely participated in PCB degradation in these sediments. Nonracemic compositions and pronounced stable carbon isotope fractionation (Δδ13C > 1‰) of PCB congeners were observed, confirming that in situ degradation occurred in the sediment cores. The progressive enrichment in 13C with increasing core depth suggested strengthened microbial degradation of the residual congener pools. The results of this study suggested that MLEA analysis of PCBs can provide reliable information to better monitor the sources and fate of these compounds in the environment.


Assuntos
Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Carbono , Isótopos de Carbono , Cloro , Sedimentos Geológicos
12.
J Chromatogr A ; 1612: 460621, 2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-31635786

RESUMO

Crocetane and phytane are two isoprenoids isomers with similar molecular structures and often present together in methane-seep sediments and some Palaeozoic crude oils. Their commonly co-elution on gas chromatography is challenging for quality and quantity analysis, making it impossible to determine their compound-specific isotopic composition, and thus, insight their geological and geochemical significance. A new gas chromatography method is reported here using a DB-17MS column (50%-phenyl-methyl polysiloxane as the stationary phase) that successfully achieved baseline separation of crocetane and phytane and can be used to accurately identify and quantify them on gas chromatography and gas chromatography-mass spectrometry. Routine steroids and terpenoids biomarkers can also be analysed simultaneously. Additionally, their compound-specific carbon isotopic compositions were also measured without matrix influence using this method. This is the first time that a simple chromatographic method for direct determination of compound-specific carbon isotopic composition of crocetane has been reported publicly.


Assuntos
Diterpenos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Terpenos/química , Terpenos/isolamento & purificação , Isótopos de Carbono/análise , Diterpenos/isolamento & purificação , Esteroides/análise , Terpenos/análise
13.
Anal Chem ; 91(3): 2209-2215, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30592605

RESUMO

Identification and quantification of mixed sources of petroleum reservoirs as well as the sources of oil spills generally requires the molecular composition information about the mixture. In this study, the relative concentrations of a series of polar acidic compounds, semiquantified by negative ion ESI FT-ICR MS, were calculated using alternating least-squares (ALS) to unmix a group of oil mixtures prepared in the laboratory using three endmember oils. It was shown that the ALS results were accurate based on the relative concentrations of polar acidic compounds, regardless of whether endmember oils and several samples were removed from the sample set. ALS was able to accurately calculate the composition of endmember oils, regardless of whether they were included in the sample set. This method is relatively simple, efficient, time-saving, and has potential for geological source identification of mixed oils or oil spills.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...