Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466309

RESUMO

In recent years, non-contact radar detection technology has been able to achieve long-term and long-range detection for the breathing and heartbeat signals. Compared with contact-based detection methods, it brings a more comfortable and a faster experience to the human body, and it has gradually received attention in the field of radar sensing. Therefore, this paper extends the application of millimeter-wave radar to the field of health care. The millimeter-wave radar first transmits the frequency-modulated continuous wave (FMCW) and collects the echo signals of the human body. Then, the phase information of the intermediate frequency (IF) signals including the breathing and heartbeat signals are extracted, and the Direct Current (DC) offset of the phase information is corrected using the circle center dynamic tracking algorithm. The extended differential and cross-multiply (DACM) is further applied for phase unwrapping. We propose two algorithms, namely the compressive sensing based on orthogonal matching pursuit (CS-OMP) algorithm and rigrsure adaptive soft threshold noise reduction based on discrete wavelet transform (RA-DWT) algorithm, to separate and reconstruct the breathing and heartbeat signals. Then, a frequency-domain fast Fourier transform and a time-domain autocorrelation estimation algorithm are proposed to calculate the respiratory and heartbeat rates. The proposed algorithms are compared with the contact-based detection ones. The results demonstrate that the proposed algorithms effectively suppress the noise and harmonic interference, and the accuracies of the proposed algorithms for both respiratory rate and heartbeat rate reach about 93%.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Sinais Vitais , Algoritmos , Feminino , Frequência Cardíaca , Humanos , Masculino , Taxa Respiratória
2.
Sensors (Basel) ; 16(12)2016 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-27973412

RESUMO

With the wide deployment of Wi-Fi networks, Wi-Fi based indoor localization systems that are deployed without any special hardware have caught significant attention and have become a currently practical technology. At the same time, the Magnetic, Angular Rate, and Gravity (MARG) sensors installed in commercial mobile devices can achieve highly-accurate localization in short time. Based on this, we design a novel indoor localization system by using built-in MARG sensors and a Wi-Fi module. The innovative contributions of this paper include the enhanced Pedestrian Dead Reckoning (PDR) and Wi-Fi localization approaches, and an Extended Kalman Particle Filter (EKPF) based fusion algorithm. A new Wi-Fi/MARG indoor localization system, including an Android based mobile client, a Web page for remote control, and a location server, is developed for real-time indoor pedestrian localization. The extensive experimental results show that the proposed system is featured with better localization performance, with the average error 0.85 m, than the one achieved by using the Wi-Fi module or MARG sensors solely.

3.
Sensors (Basel) ; 16(10)2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27735879

RESUMO

The aim of this paper is to present a new indoor localization approach by employing the Angle-of-arrival (AOA) and Received Signal Strength (RSS) measurements in Wi-Fi network. To achieve this goal, we first collect the Channel State Information (CSI) by using the commodity Wi-Fi devices with our designed three antennas to estimate the AOA of Wi-Fi signal. Second, we propose a direct path identification algorithm to obtain the direct signal path for the sake of reducing the interference of multipath effect on the AOA estimation. Third, we construct a new objective function to solve the localization problem by integrating the AOA and RSS information. Although the localization problem is non-convex, we use the Second-order Cone Programming (SOCP) relaxation approach to transform it into a convex problem. Finally, the effectiveness of our approach is verified based on the prototype implementation by using the commodity Wi-Fi devices. The experimental results show that our approach can achieve the median error 0.7 m in the actual indoor environment.

4.
Micromachines (Basel) ; 7(5)2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30404267

RESUMO

Pedestrian Dead Reckoning (PDR) by combining the Inertial Measurement Unit (IMU) and magnetometer is an independent navigation approach based on multiple sensors. Since the inertial component error is significantly determined by the parameters of navigation equations, the navigation precision may deteriorate with time, which is inappropriate for long-time navigation. Although the BeiDou (BD) navigation system can provide high navigation precision in most scenarios, the signal from satellites is easily degraded because of buildings or thick foliage. To solve this problem, a tightly-coupled BD/MEMS (Micro-Electro-Mechanical Systems) integration algorithm is proposed in this paper, and a prototype was built for implementing the integrated system. The extensive experiments prove that the BD/MEMS system performs well in different environments, such as an open sky environment and a playground surrounded by trees and thick foliage. The proposed algorithm is able to provide continuous and reliable positioning service for pedestrian outdoors and thereby has wide practical application.

5.
Sensors (Basel) ; 15(10): 24791-817, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26404274

RESUMO

Due to the wide deployment of wireless local area networks (WLAN), received signal strength (RSS)-based indoor WLAN localization has attracted considerable attention in both academia and industry. In this paper, we propose a novel page rank-based indoor mapping and localization (PRIMAL) by using the gene-sequenced unlabeled WLAN RSS for simultaneous localization and mapping (SLAM). Specifically, first of all, based on the observation of the motion patterns of the people in the target environment, we use the Allen logic to construct the mobility graph to characterize the connectivity among different areas of interest. Second, the concept of gene sequencing is utilized to assemble the sporadically-collected RSS sequences into a signal graph based on the transition relations among different RSS sequences. Third, we apply the graph drawing approach to exhibit both the mobility graph and signal graph in a more readable manner. Finally, the page rank (PR) algorithm is proposed to construct the mapping from the signal graph into the mobility graph. The experimental results show that the proposed approach achieves satisfactory localization accuracy and meanwhile avoids the intensive time and labor cost involved in the conventional location fingerprinting-based indoor WLAN localization.


Assuntos
Redes de Comunicação de Computadores , Gráficos por Computador/instrumentação , Redes Locais/instrumentação , Análise de Sequência de DNA/instrumentação , Tecnologia sem Fio , Algoritmos , Acessibilidade Arquitetônica , Meio Ambiente , Arquitetura de Instituições de Saúde , Humanos , Análise de Sequência de DNA/métodos , Tecnologia sem Fio/instrumentação
6.
ScientificWorldJournal ; 2014: 647370, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24683349

RESUMO

This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future.


Assuntos
Redes de Comunicação de Computadores , Modelos Lineares , Modelos Teóricos , Tecnologia sem Fio , Análise Custo-Benefício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...