Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(19): 8202-8213, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687296

RESUMO

In this study, two polymorphs of the [1,1'-dibutyl-4,4'-bipyridinium][Ni(mnt)2] salt (1) were synthesized. The dark-green polymorph (designated as 1-g) was prepared under ambient conditions by the rapid precipitation method in aqueous solutions. Subsequently, the red polymorph (labeled as 1-r) was obtained by subjecting 1-g to ultrasonication in MeOH at room temperature. Microanalysis, infrared spectroscopy, thermogravimetry (TG), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) techniques were used to characterize the two polymorphs. Both 1-g and 1-r exhibit structural phase transitions: a reversible phase transition at ∼403 K (∼268 K) upon heating and 384 K (∼252 K) upon cooling for 1-g (1-r) within the temperature range below 473 K. Interestingly, on heating 1-r to 523 K, an irreversible phase transition occurred at about 494 K, resulting in the conversion of 1-r into 1-g. Relative to 1-r, 1-g represents a thermodynamically metastable phase wherein numerous high-energy conformations in butyl chains of cations are confined within the lattice owing to quick precipitation or rapid annealing from higher temperatures. Through variable-temperature single crystal and powder X-ray diffractions, UV-visible spectroscopy, dielectric spectroscopy, and DSC analyses, this study delves into the mechanism underlying phase transitions for each polymorph and the manual transformation between 1-g and 1-r as well.

2.
Dalton Trans ; 52(26): 8918-8926, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37341120

RESUMO

A thermochromic or mechanochromic material can switch between at least two stable states in response to changes in temperature or static pressure/strain. In this study, we investigated a Ni-dithiolene dianion salt, 1,1'-diheptyl-4,4'-bipyridinium bis(maleonitriledithiolato)nickelate (1), and found that its cations and anions stack alternately to form a uniform mixed stack. These mixed stacks then combine to form a molecular solid through Coulomb and van der Waals interactions. Upon heating, 1 undergoes a reversible phase transition at around 340/320 K during the first heating/cooling cycle, resulting in rapid thermochromism with a color change from green (stable state) to red (metastable state) within a few seconds. This is the first report of a crystal of bis(maleonitriledithiolato)nickelate(II) salt with green color. Additionally, 1 exhibits irreversible mechanochromism, intense near-IR absorbance, and a dielectric anomaly. The structural phase transition is responsible for these properties, as it induces alterations in the π-orbital overlap between the anion and cation within a mixed stack. The intense near-IR absorbance arises from the ion-pair charge transfer transition from [Ni(mnt)2]2- to 4,4'-bipyridinium.

3.
Dalton Trans ; 50(8): 3060-3066, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33576358

RESUMO

Integrating the merits of different components to construct heterostructures for energy storage and conversion has attracted intensive attention. Herein, taking advantage of bimetallic MOFs and transition bimetal hydroxide, we have successfully used nanoflower-like Ni1-xCox(OH)2 as both the precursor and template to in situ construct three dimensional (3D) NiCo-MOF@Ni1-xCox(OH)2 (denoted as MOF@TMH) hierarchical heterostructures. Benefiting from the optimized composition with hierarchical heterostructures assembled by ultrathin nanosheets, MOF@TMH-2 possesses rich effective active sites and high electrochemical reactivity, delivering superior pseudocapacitor performance with a specific capacitance of 1855.3 F g-1 at 2 A g-1 and good rate performance. Besides, MOF@TMH-2 also exhibits excellent OER activity with small overpotentials of 193 mV and 310 mV at 10 and 100 mA cm-2, respectively.

4.
RSC Adv ; 10(15): 9046-9051, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35496546

RESUMO

Herein we report the first example of the proton conductivity of an open-framework metal phosphate (NH3(CH2)3NH3)2-[Fe4(OH)3(HPO4)2(PO4)3]·4H2O under aqua-ammonia vapor. Its optimized proton conductivity is 5 × 10-2 S cm-1 at 313 K and aqua-ammonium vapor from 1 M NH3·H2O solution. That is approximately two orders of magnitude greater than the maximum value under water vapor (8.0 × 10-4 S cm-1 at 317 K and 99% RH). The proton transfer mechanism has been proposed in terms of the structural analyses, activation energy calculations, and PXRD determinations.

5.
Chem Asian J ; 14(4): 582-591, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650249

RESUMO

A cyclen-based hybrid supermolecule crystal, [(FeCl2 )(cyclen)]Cl (1), where cyclen=1,4,7,10-tetraazacyclododecane, was prepared using a liquid-liquid diffusion approach. The variable crystal structures exhibit that compound 1 belongs to an orthorhombic crystal system, Pna21 space group (point group C2V ) in the temperature range of 150-400 K. This hybrid supermolecule shows a dielectric relaxation behavior around room temperature, and the ferroelectric nature of 1 has been directly verified by hysteresis measurements. In addition, the AC (alternating current) conductivity study reveals that the 1 displays a beyond limiting behavior. These interesting findings are for the first time reported in the field of supermolecular ferroelectrics. This study may open a new way to construct supermolecular ferroelectrics and give insights into their conductor behavior.

6.
J Phys Chem B ; 122(51): 12428-12435, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30514086

RESUMO

One-dimensional (1D) S = 1/2 Heisenberg antiferromagnetic (AFM) chain system shows frequently a spin-Peierls-type transition owing to strong spin-lattice coupling. From high-temperature phase (HTP) to low-temperature phase (LTP), the spin chain distortion leads to the reduction in lattice symmetry in LTP, called the symmetry breaking (SB) phase transition. Herein, we report the first example of 1D S = 1/2 AFM molecular crystal, [Et3( n-Pr)N][Ni(dmit)2] (Et3( n-Pr)N+ = triethylpropylammonium, dmit2- = 2-thioxo-1,3-dithiole-4,5-dithiolate), which shows a structural phase transition with lattice symmetry increase in LTP, which is contrary to the SB phase transition. Particularly, the structure phase transition leads to magnetically bistable state with TC↑ ≈ 375 K, TC↓ ≈ 320 K, and surprisingly large thermal hysteresis (∼55 K). Additionally, LTP and HTP coexist in a temperature region near TC but not at TC in this 1D spin system. The large hysteresis is related to the huge deformation of anion stack, which needs high activation energy for the structure transformation and magnetic transition between LTP and HTP. This study would not only provide new insight into the relationship of spin-Peierls-type transition and structure phase transition but also offer a roadmap for searching molecular-scale magnetic bistable materials, which are in huge demand in future electronic, magnetic, and photonic technologies.

7.
ACS Appl Mater Interfaces ; 10(34): 28656-28663, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30070818

RESUMO

Proton-exchange membranes (PEMs), characterized by selectively permitting the transfer of protons and acting as a separator in electrochemical devices, have attracted immense attention. The composite membrane, fabricated from organic polymer matrix and high proton-conducting metal-organic framework (MOF), integrates the excellent physical and chemical performances of the polymer and MOF, achieving collective properties for good-performance PEMs. In this study, we demonstrate that MOF-801 shows remarkable proton conductance with σ = 1.88 × 10-3 S cm-1 at 298 K and 98% relative humidity (RH), specifically, together with extra stability to hydrochloric acid or diluting sodium hydroxide aqueous solutions and boiling water. Furthermore, the composite membranes (denoted MOF-801@PP- X, where X represents the mass percentage of MOF-801 in the membrane) have been fabricated using the sub-micrometer-scale crystalline particles of MOF-801 and blending the poly(vinylidene fluoride)-poly(vinylpyrrolidone) matrix, and these PEMs display high proton conductivity, with σ = 1.84 × 10-3 S cm-1 at 325 K 98% RH. A composite membrane as PEM was assembled into H2/O2 fuel cell for tests, indicating that these membrane materials have vast potential for PEM application on electrochemical devices.

8.
Chem Asian J ; 13(6): 656-663, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29356387

RESUMO

Multifunctional materials that exhibit different physical properties in a single phase have potential for use in multifunctional devices. Herein, we reported an organic-inorganic hybrid compound [(18-crown-6)K][Fe(1)Cl(1)4 ]0.5 [Fe(2)Cl(2)4 ]0.5 (1) by incorporating KCl and FeCl3 into a 18-crown-6 molecule, which acts as a host of the six O atoms providing a lone pair of electrons to anchor the guest potassium cation, and [FeCl4 ]- as a counterion for charge balance to construct a complex salt. This salt exhibited a one-step reversible structural transformation giving two separate high and low temperature phases at 373 K, which was confirmed by systematic characterizations including differential scanning calorimetry (DSC) measurements, variable-temperature structural analyses, and dielectric, impedance, variable-temperature magnetic susceptibility measurements. Interestingly, the structural transformation was coupled to both hysteretic dielectric phase transition, conductivity switch and magnetic-phase transition at 373 K. This result gives an idea for designing a new type of phase-transition materials harboring technologically important magnetic, conductivity and dielectric properties.

9.
ACS Appl Mater Interfaces ; 10(3): 2619-2627, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29286233

RESUMO

Proton-conducting materials have attracted increasing interest because of the promising technological applications as key components in various electrochemical devices. It is of great significance for technique application to seek superior proton-conducting materials, operating under both anhydrous and humidified conditions in a wide temperature range. Herein we demonstrate the proton conductance of an open-framework chalcogenide, (CH3NH3)2Ag4Sn3S8 (1), and the postsynthesis product 2 achieved by doping hydrochloric acid into 1. Hybrid 2 displays both intrinsic anhydrous and water-assisted high proton conductance, with σ = 1.87 × 10-4 S·cm-1 at 463 K under N2 atmosphere and 1.14 × 10-3 S·cm-1 at 340 K and 99% relative humidity, and these conductivities are comparable to that in the efficient metal-organic frameworks-based proton-conducting materials. Moreover, hybrid 2 shows excellent thermal stability and long-term stability of proton conduction.

10.
Inorg Chem ; 56(22): 13998-14004, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29095601

RESUMO

Switchable conducting or dielectric materials, as the key component, show important technological applications in modern electrical and electronic devices, including data communication, phase shifters, varactors, and rewritable optical data storage. To explore new types of switchable conducting or dielectric materials could significantly accelerate the development of efficient electrical and electronic devices. Herein we present the first example of switchable conducting and dielectric material, which is based on an open-framework phosphate, (C2N2H10)0.5CoPO4. A reversible isostructural phase transition occurs at ∼348 K in this open-framework phosphate, to give both dielectrics and conductance anomaly around the critical temperature of phase transition. This study will provide a roadmap for searching new switchable conducting or dielectric materials as well as new applications of open-framework phosphates.

11.
Inorg Chem ; 56(7): 4169-4175, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28328214

RESUMO

Proton-exchange membranes (PEMs) as separators have important technological applications in electrochemical devices, including fuel cells, electrochemical sensors, electrochemical reactors, and electrochromic displays. The composite membrane of a proton-conducting metal-organic framework (MOF) and an organic polymer combines the unique physical and chemical nature of the polymer and the high proton conductivity of the MOF, bringing together the best of both components to potentially fabricate high-performance PEMs. In this study, we have investigated the proton-transport nature of a zirconium(IV) MOF, MOF-808 (1). This superior-water-stability MOF shows striking proton conductivity with σ = 7.58 × 10-3 S·cm-1 at 315 K and 99% relative humidity. The composite membranes of 1 and poly(vinylidene fluoride) (PVDF) have further been fabricated and are labeled as 1@PVDF-X, where X represents the mass percentage of 1 (as X%) in 1@PVDF-X and X = 10-55%. The composite membranes exhibit good mechanical features and durability for practical application and a considerable proton conductivity of 1.56 × 10-4 S·cm-1 in deionized water at 338 K as well. Thus, the composite membranes show promising applications as alternative PEMs in diverse electrochemical devices.

12.
Dalton Trans ; 45(48): 19466-19472, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27885370

RESUMO

Proton-conducting materials show important technological applications as key components in energy conversion, electrochemical sensing and electrochromic devices; the exploration for new types of proton-conducting materials is crucial for the development of efficient electrochemical devices. In this study, we investigated the proton transport nature of an inorganic-organic hybrid crystal of open-framework cobalt phosphate, (C2N2H10)0.5CoPO4. The structure of the hybrid crystal consists of the [CoPO4]-∞ anionic framework, and the proton carriers, H2en2+ cations (en = ethylenediamine), are located in the pores to compensate the negative charges of the inorganic framework. The open-framework is thermally stable up to 653 K (380 °C) at least, and also shows superior water stability. The open-framework exhibits negligible conductance in an anhydrous environment even at 473 K; however, there is evident water-assisted proton conduction. The conductivity reaches 2.05 × 10-3 S cm-1 at 329 K and 98% RH. Such high proton conductivity can compete with numerous state-of-the-art MOFs/PCPs-based proton conductors, and this material has promising applications in diverse electrochemical devices.

13.
Dalton Trans ; 45(18): 7893-9, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27067243

RESUMO

A clathrate NH4Br@HKUST-1 has been prepared by means of soaking the metal-organic-framework, HKUST-1, in ammonium bromide saturated ethanol solution at ambient temperature. Both NH4Br@HKUST-1 and HKUST-1 show the same framework structure. The formula of the clathrate is approximately expressed as Cu3(BTC)2(NH4Br)1.15. The thermal stability of the metal-organic framework is not affected by incorporating ammonium bromide into its pores. The impedance spectra measurements were performed for both NH4Br@HKUST-1 and HKUST-1 in anhydrous and selected relative humidity environments, disclosing that the conductivity of NH4Br@HKUST-1 is enhanced by three/four orders of magnitude under the same conditions with respect to HKUST-1. This study provided an efficient strategy to achieve new high conductivity proton transport materials.

14.
Dalton Trans ; 44(10): 4665-70, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25662571

RESUMO

The intercalated kaolinite with potassium acetate (K-KAc), with ca. 91.9% intercalation ratio, was prepared. Thermogravimetric and variable-temperature X-ray powder diffraction analyses disclosed that a small amount of water is easily absorbed into the interlayer space of the K-KAc. The previously reported phase with the 14.2 Å interlayer distance is actually the hydrous K-KAc, which has an approximate formula of Al2Si2O5(OH)4·0.5KAc·0.25H2O. The crystal structures of hydrous and anhydrous phases of K-KAc were simulated in the density functional theory framework, demonstrating that the interactions between the K(+) and acetate ions and the inner surface of kaolinite are significantly strengthened in the anhydrous phase with regard to the hydrous phase. The ionic conductivity of K-KAc indicated that the mobility of the interlayer ions is strongly improved by thermal activation and the conductivity increased by four orders of magnitude from 363 to 423 K.

15.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 12): m395-6, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25553007

RESUMO

The asymmetric unit of the title salt, (C12H11BrN)2[Ni(C4N2S2)2], consists of one 1-(4-bromo-benz-yl)pyridinium cation and one half of a complex [Ni(mnt)2](2-) (mnt(2-) is the maleo-nitrile-dithiol-ate dianion). The Ni(2+) ion is located on an inversion centre and is coordinated by four S atoms from two mnt(2-) ligands, exhibiting a square-planar coordination environment. In the cation, the planes of the pyridinium and benzene rings make a dihedral angle of 69.86 (19)°. The cations and anions are alternately arranged in layers parallel to (001) and are held together by non-classical C-H⋯N hydrogen bonds.

16.
Dalton Trans ; 42(11): 3827-34, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23306860

RESUMO

A new one-dimensional (1-D) ion-pair compound, [1,7-bis(1-methylimidazolium)heptane][Ni(mnt)(2)](2) (mnt(2-) = maleonitriledithiolate), was synthesized and characterized structurally and magnetically. This compound shows a spin-Peierls-type transition at around 235 K. Its crystal structure belongs to the monoclinic system with space group C2/c and the magnetic [Ni(mnt)(2)](-) anions form uniform stacks in the high-temperature (HT) phase. The crystal undergoes a transformation into the triclinic space group P1 accompanied by the magnetic transition and the anion stacks become dimerized in the low-temperature (LT) phase. The entropy changes (ΔS) are estimated to be 0.772 J K(-1) mol(-1) for the spin-Peierls-type transition, from DSC data, which is much less than the spin entropy change (ΔS = R ln 2 ≈ 5.76 J K(-1) mol(-1)), indicating that a substantial short-range order persists above the transition temperature. The variable temperature IR spectra showed that the peak positions and intensities for the bands near 1160 and 725 cm(-1), which correspond respectively to the ν(C-C) + ν(C-S) mode of the mnt(2-) ligands and the rocking vibration mode of the methylene group γ(r)(CH(2)) in the cation moiety, undergo an abrupt change at around 240 K, close to the transition temperature. This observation demonstrates that the intramolecular vibrations of both the anion and the counter-cation probably couple with the spins to cooperate with the spin-Peierls-type phase transition in this 1-D spin system.

17.
Dalton Trans ; 41(25): 7609-19, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22595883

RESUMO

The ion-pair complexes of [4-NH(2)-PyH][M(mnt)(2)] (M = Pt for 1 and Ni for 3) and their deuterated analogues [4-NH(2)-PyD][M(mnt)(2)] (M = Pt for 2 and Ni for 4) are isostructural with each other. Four complexes crystalline in monoclinic space group C2/c, whose asymmetric unit consists of two halves of [M(mnt)(2)](-) anions and one cation, show quite similar cell parameters and almost identical packing structures as well. In the crystals of 1-4, two types of crystallographically inequivalent [M(mnt)(2)](-) anions construct individual layers, which are separated by the cation layer; the supramolecular networks are formed via the H-bonding interactions between the [M(mnt)(2)](-) and 4-NH(2)-PyH(+) (or 4-NH(2)-PyD(+)) ions as well as the weakly ππ stacking interactions between the [M(mnt)(2)](-) anions. The four isostructural complexes exhibit canted antiferromagnetism, arising from the non-collinearity of the magnetic moments between the crystallographically inequivalent anion layers, with T(C) ≈ 14.8 K for 1, 13.6 K for 2, 7.7 K for 3 and 8.8 K for 4, respectively. Ac magnetic susceptibility measurements revealed that 1 and 2 show spin canting, while 3 and 4 show hidden-spin canting characteristics. The isostructural 1 and 3 were deuterated to give the divergent isotope effects on the cell volume and T(C).

18.
Dalton Trans ; 41(9): 2667-76, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22237662

RESUMO

The crystal structures and magnetic properties were investigated experimentally and theoretically for two S = ½ spin chain complexes, which consist of [M(mnt)(2)](-) (M = Pt for 1 or Pd for 2) with 1-(4'-bromo-2'-flurobenzyl)-4-aminopyridinium (1-BrFBz-4-NH(2)Py(+)). The 1-BrFBz-4-NH(2)Py(+) cations exhibit different molecular conformations and arrangements in 1 and 2; the [M(mnt)(2)](-) anions form regular stacks in 1, whereas they form irregular stacks in 2. In addition, the intermolecular interactions between the [M(mnt)(2)](-) anions and cations are also different from each other in the crystals of 1 and 2. Complex 1 shows the magnetic characteristics of a low-dimensional antiferromagnetic coupling spin system with a spin-Peierls-type transition around 7 K, and complex 2 exhibits diamagnetism over the temperature range of 5-300 K. Theoretical analyses, based on the calculations for the charge density distributions of [Pt(mnt)(2)](-) and [Pd(mnt)(2)](-) anions and the magnetic exchange constants within the anion spin chains, addressed the diverse molecular alignments in the crystals of 1 and 2 and distinct magnetic behaviors between 1 and 2.

19.
Inorg Chem ; 50(9): 3970-80, 2011 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-21462925

RESUMO

Three [1-N-(4'-R-benzyl)-4-aminopyridinium][Pt(mnt)(2)] compounds were structurally and magnetically characterized, where the substituent was attached to the para-position of the phenyl ring (R = CN (1), Cl (2), and H (3); mnt(2-) = maleonitriledithiolate). 1 and 2 crystallized in the monoclinic space group P2(1)/c, with the cations and anions forming segregated columnar stacks. Their structural differences involved two aspects: (1) both anion and cation stacks were regular in 1 and irregular in 2; (2) the neighboring cations were arranged in the boat-type pattern in 1, whereas these cations were in the chair-type pattern in 2 within the cation stack. 3 belonged to the triclinic space group P ̅1, where the anions were assembled into the stack with a tetrameric [Pt(mnt)(2)](-) subunit, but the cations did not form the columnar stack. Magnetic measurements disclosed that a spin-Peierls-type transition occurred around 240 K for 1, whereas a long-range, antiferromagnetic ordering took place at about 5.8 K, and a metamagnetic phenomenon was observed with H(C) ≈ 1000 Oe for 2; 3 showed very strong antiferromagnetic interactions with diamagnetism in the temperature range 5-300 K. Combined with our previous studies, the correlation between the stacking pattern of benzylpyridinium derivatives in a cation stack and the spin-Peierls-type transition is discussed for the series of quasi-1-D [M(mnt)(2)](-) (M = Ni, Pd and Pt) compounds.

20.
Dalton Trans ; 40(14): 3622-30, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21380406

RESUMO

A low-dimensional compound [C(6)-Apy][Ni(mnt)(2)] (1, where mnt(2-) = maleonitriledithiolate, C(6)-Apy(+) = 4-amino-1-hexylpyridinium) has been designed and synthesized, which has layer arrangement of anions and cations and shows two steps of magnetic transitions. The low temperature magnetic transition has an uncommon hysteresis loop, while the crystal structure investigations disclosed no structural transition with the magnetic transition. The high temperature magnetic transition exhibits two remarkable features: (1) it synchronously occurs with a crystalline-to-mesophase transition in the first heating process and (2) the structural changes that accompany the solid-mesophase transition are irreversible. A diamagnetic and isostructural compound, [C(6)-Apy][Cu(mnt)(2)], is further characterized by structure, DSC and POM techniques, which revealed also the existence of an irreversible crystalline-to-mesophase transition in the same temperature interval of [C(6)-Apy][Ni(mnt)(2)]. Therefore, the high-temperature magnetic transition in 1 is driven by release of the structural strains, but not magnetoelastic interactions. The mesophase exhibits the characteristic of smectic A phase, and the alkyl chain melting in the cation layers probably lead to the formation of mesophase. It is noticeable that the finding of a mesophase occurring in a hexyl hydrocarbon chain molecular system is in contrast to a suggested rule that at least a dodecyl chain is required. Our results will shed a light on the design and preparation of a new low-dimensional molecular system combining magnetic transition and liquid crystal properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...