Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(11): 802, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36121518

RESUMO

The epicontinental seas to the east of China have become highly anthropogenically impacted due to rapid economic development in recent decades, resulting in various environmental problems, including heavy metal pollution. The Bohai Strait, as a key junction connecting the material-energy exchange between the Bohai and Yellow Seas, is extremely critical in regional pollution prevention and control. To ascertain the spatial distribution and contamination levels of heavy metals in the surface sediments of the northern Bohai Strait, a systematic investigation was conducted. Geochemical analysis revealed that the concentrations (in ppm) of heavy metal elements in surface sediments vary in the range of 4.19-77.6 for As, 0.04-0.21 for Cd, 5.1-65.7 for Pb, 0.30-39.40 for Cu, 7.77-46.50 for Ni, 1.50-86.60 for Cr, 11.70-91.80 for Zn, and 0.005-0.038 for Hg. Ecological statistics indicate that the northern Bohai Strait suffers from prominent heavy metal pollution primarily induced by As, Cd, and Pb, accompanied by relatively weak pollution of Cu and Ni. Sediments collected from the submarine depressions and the southeast region exhibit higher heavy metal concentrations, and as a consequence, more serious ecological risk. Correlation analysis indicated that the accumulations of Hg, Cr, and Zn were associated with the deposition of organic matter. Preliminary provenance discrimination suggested that the pollutants were mainly derived from the eastern parts of the North Yellow Sea, rather than the Bohai region.


Assuntos
Poluentes Ambientais , Mercúrio , Metais Pesados , Poluentes Químicos da Água , Cádmio/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Sedimentos Geológicos/análise , Chumbo/análise , Mercúrio/análise , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(3): 649-56, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26117873

RESUMO

Marine sediment pore water is one of the important objects in the study of global environmental change, marine geology and biogeochemistry. Anoxic pore water in highly reducing deep-sea sediments commonly contains a large amount of dissolved sulfide (H2S and HS-). The sulfide species within sediment pore water are significant not only because the importance of themselves, but also because they exist as a function of pH which is another key parameter in pore water study. As degassing and chemical equilibrium altering are both inevitable, concentrations of sulfide species and pH value of marine sediment pore water acquired with traditional non-in situ technologies are of great uncertainty, and cannot represent the real geochemistry information. However, the recent deployment of an in situ laser Raman pore water sampler allows us to observe spectral sulfide signals of marine sediments in situ and in real time, which provide us a new technique to solve this problem. Sulfide species in water have a relatively strong Raman signal, which often appears in the form of a characteristic overlapping peak between 2 550 - 2 620 cm(-1) and can be decomposed into HS- at 2 572 cm(-1) and H2S at 2 592 cm(-1). In the present paper, quantitative analysis of H2S and HS- with Raman spectroscopy is proved practicable and the accuracy is good. The pH of pore water is an important influencing factor of the diagenetic processes. As H2S and HS- are conjugate acid-base pairs, sulfide species within pore water exist as a function of pH and their concentration ratio depend on pH. This relationship is also shown in the Raman spectrum. To formulate the pore water pH calculation, sulfide solutions with pH range from 6.11 to 13.05 were prepared and their Raman spectra were observed. It is verified that the morphology of overlapping peaks change regularly with pH values. This phenomenon provides us the possibility of measuring the pH of pore water in situ via Raman spectroscopy. Based on peaks decomposition and correlativity analysis, we propose here a novel in situ pH measuring method for sediment pore water containing sulfide. This method can be used to measure the pH of pore water when the overlapping peak of sulfide is resolvable. The application scope of this pH measuring method in this study is 6.11 - 8.32, which covers almost all pH value of marine sediment pore water already known. The study provides additional technical reference for obtaining high-fidelity information of marine sediment pore water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...