Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397759

RESUMO

Obesity is a risk factor for highly prevalent age-related neurodegenerative diseases, the pathogenesis of whichinvolves mitochondrial dysfunction and protein oxidative damage. Lipoxidation, driven by high levels of peroxidizable unsaturated fatty acids and low antioxidant protection of the brain, stands out as a significant risk factor. To gain information on the relationship between obesity and brain molecular damage, in a porcine model of obesity we evaluated (1) the level of mitochondrial respiratory chain complexes, as the main source of free radical generation, by Western blot; (2) the fatty acid profile by gas chromatography; and (3) the oxidative modification of proteins by mass spectrometry. The results demonstrate a selectively higher amount of the lipoxidation-derived biomarker malondialdehyde-lysine (MDAL) (34% increase) in the frontal cortex, and positive correlations between MDAL and LDL levels and body weight. No changes were observed in brain fatty acid profile by the high-fat diet, and the increased lipid peroxidative modification was associated with increased levels of mitochondrial complex I (NDUFS3 and NDUFA9 subunits) and complex II (flavoprotein). Interestingly, introducing n3 fatty acids and a probiotic in the high-fat diet prevented the observed changes, suggesting that dietary components can modulate protein oxidative modification at the cerebral level and opening new possibilities in neurodegenerative diseases' prevention.

2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256201

RESUMO

Limited nutrient supply to the fetus results in physiologic and metabolic adaptations that have unfavorable consequences in the offspring. In a swine animal model, we aimed to study the effects of gestational caloric restriction and early postnatal metformin administration on offspring's adipose tissue epigenetics and their association with morphometric and metabolic variables. Sows were either underfed (30% restriction of total food) or kept under standard diet during gestation, and piglets were randomly assigned at birth to receive metformin (n = 16 per group) or vehicle treatment (n = 16 per group) throughout lactation. DNA methylation and gene expression were assessed in the retroperitoneal adipose tissue of piglets at weaning. Results showed that gestational caloric restriction had a negative effect on the metabolic profile of the piglets, increased the expression of inflammatory markers in the adipose tissue, and changed the methylation of several genes related to metabolism. Metformin treatment resulted in positive changes in the adipocyte morphology and regulated the methylation of several genes related to atherosclerosis, insulin, and fatty acids signaling pathways. The methylation and gene expression of the differentially methylated FASN, SLC5A10, COL5A1, and PRKCZ genes in adipose tissue associated with the metabolic profile in the piglets born to underfed sows. In conclusion, our swine model showed that caloric restriction during pregnancy was associated with impaired inflammatory and DNA methylation markers in the offspring's adipose tissue that could predispose the offspring to later metabolic abnormalities. Early metformin administration could modulate the size of adipocytes and the DNA methylation changes.


Assuntos
Desnutrição , Metformina , Gravidez , Animais , Feminino , Suínos , Epigenoma , Restrição Calórica , Tecido Adiposo , Metaboloma , Metformina/farmacologia
3.
Eur J Nutr ; 62(6): 2463-2473, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37148357

RESUMO

PURPOSE: Obesity during childhood has become a pandemic disease, mainly caused by a diet rich in sugars and fatty acids. Among other negative effects, these diets can induce cognitive impairment and reduce neuroplasticity. It is well known that omega-3 and probiotics have a beneficial impact on health and cognition, and we have hypothesized that a diet enriched with Bifidobacterium breve and omega-3 could potentiate neuroplasticity in prepubertal pigs on a high-fat diet. METHODS: Young female piglets were fed during 10 weeks with: standard diet (T1), high-fat (HF) diet (T2), HF diet including B. breve CECT8242 (T3) and HF diet including the probiotic and omega-3 fatty acids (T4). Using hippocampal sections, we analyzed by immunocytochemistry the levels of doublecortin (DCX) to study neurogenesis, and activity-regulated cytoskeleton-associated protein (Arc) as a synaptic plasticity related protein. RESULTS: No effect of T2 or T3 was observed, whereas T4 increased both DCX+ cells and Arc expression. Therefore, a diet enriched with supplements of B. breve and omega-3 increases neurogenesis and synaptic plasticity in prepubertal females on a HF diet from nine weeks of age to sexual maturity. Furthermore, the analysis of serum cholesterol and HDL indicate that neurogenesis was related to lipidic demand in piglets fed with control or HF diets, but the neurogenic effect induced by the T4 diet was exerted by mechanisms independent of this lipidic demand. CONCLUSION: Our results show that the T4 dietary treatment is effective in potentiating neural plasticity in the dorsal hippocampus of prepubertal females on a HF diet.


Assuntos
Bifidobacterium breve , Ácidos Graxos Ômega-3 , Animais , Feminino , Suínos , Ácidos Graxos Ômega-3/farmacologia , Hipocampo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Neurogênese
4.
Eur J Nutr ; 62(2): 833-845, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36280613

RESUMO

PURPOSE: Milk fat globule membrane (MFGM) has components with emulsifier properties that could affect the provision of substrates to the brain. We evaluated the effects of MFGM plus milk fat addition to infant formulas on docosahexaenoic acid (DHA) availability and gut development. METHODS: In Experiment 1, suckling piglets were divided into 3 groups: Group L1 (n = 8): fed with a vegetal fat formula with palm oil; L2 (n = 8): canola oil formula and L3 (n = 8): milk fat + canola oil + 1% Lacprodan (3% MFGM of total protein content). In Experiment 2, Group L4 (n = 7): fed with canola oil + 1% Lacprodan (3% MFGM) and Group L5 (n = 5): milk fat + canola oil + 2% Lacprodan (6% MFGM). All formulas contained 0.2% DHA and 0.2% arachidonic acid. RESULTS: In Experiment 1, DHA was similar among the groups in both total fatty acids and plasma phospholipids (PL). However, 3% MFGM (L3) increased significantly the proportion of DHA and LC-PUFA n-3 in liver total fatty acids, jejunum, and also in jejunum PL respect to the other formulas. There were no changes in gut histology, cell proliferation, apoptosis, or brain DHA content. In Experiment 2, higher MFGM dose was used. Then, higher DHA was not only found in peripheral tissues of 6% MFGM (L5) piglets but also in plasma PL, while a similar trend was observed in cortex PL (p = 0.123). CONCLUSION: In conclusion, MFGM plus milk fat may increase DHA availability of infant formulas which could contribute to their beneficial health effects.


Assuntos
Ácidos Docosa-Hexaenoicos , Fórmulas Infantis , Animais , Suínos , Fórmulas Infantis/química , Óleo de Brassica napus , Ácidos Graxos , Fosfolipídeos
5.
Int J Obes (Lond) ; 46(5): 1018-1026, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35091671

RESUMO

OBJECTIVES: Maternal overfeeding during gestation may lead to adverse metabolic programming in the offspring mediated by epigenetic alterations. Potential reversal, in early life, of these alterations may help in the prevention of future cardio-metabolic conditions. In this context, our aims were: (1) to study the effects of maternal overfeeding on the metabolic and epigenetic programming of offspring's adipose tissue; and (2) to test the potential of postnatal metformin treatment to reverse these changes. METHODS: We used a swine animal model where commercial production sows were either overfed or kept under standard diet during gestation, and piglets at birth were randomly assigned to metformin (n = 16 per group) or vehicle treatment during lactation (n = 16 per group). RESULTS: Piglets born to overfed sows showed a worse metabolic profile (higher weight, weight gain from birth and abdominal circumference; all p < 0.05) together with altered serological markers (increased HOMA-IR, fructosamine, total cholesterol, C-Reactive Protein and lower HMW adiponectin; all p < 0.05). The visceral adipose tissue also showed altered morphology (increased adipocyte area, perimeter and diameter; all p < 0.05), as well as changes in gene expression (higher CCL2 and INSR, lower DLK1; all p < 0.05), and in DNA methylation (96 hypermethylated and 99 hypomethylated CpG sites; FDR < 0.05). Metformin treatment significantly ameliorated the abnormal metabolic profile, decreasing piglets' weight, weight gain from birth, abdominal circumference and fructosamine (all p < 0.05) and reduced adipocyte area, perimeter, and diameter in visceral adipose tissue (all p < 0.05). In addition, metformin treatment potentiated several associations between gene expression in visceral adipose tissue and the altered metabolic markers. CONCLUSIONS: Maternal overfeeding during gestation leads to metabolic abnormalities in the offspring, including adipose tissue alterations. Early metformin treatment mitigates these effects and could help rescue the offspring's metabolic health.


Assuntos
Metformina , Hipernutrição , Tecido Adiposo/metabolismo , Animais , Feminino , Frutosamina/metabolismo , Humanos , Metformina/farmacologia , Mães , Hipernutrição/metabolismo , Suínos , Aumento de Peso
6.
Sci Rep ; 10(1): 18462, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116177

RESUMO

The inclusion of health-related traits, or functionally associated genetic markers, in pig breeding programs could contribute to produce more robust and disease resistant animals. The aim of the present work was to study the genetic determinism and genomic regions associated to global immunocompetence and health in a Duroc pig population. For this purpose, a set of 30 health-related traits covering immune (mainly innate), haematological, and stress parameters were measured in 432 healthy Duroc piglets aged 8 weeks. Moderate to high heritabilities were obtained for most traits and significant genetic correlations among them were observed. A genome wide association study pointed out 31 significantly associated SNPs at whole-genome level, located in six chromosomal regions on pig chromosomes SSC4, SSC6, SSC17 and SSCX, for IgG, γδ T-cells, C-reactive protein, lymphocytes phagocytic capacity, total number of lymphocytes, mean corpuscular volume and mean corpuscular haemoglobin. A total of 16 promising functionally-related candidate genes, including CRP, NFATC2, PRDX1, SLA, ST3GAL1, and VPS4A, have been proposed to explain the variation of immune and haematological traits. Our results enhance the knowledge of the genetic control of traits related with immunity and support the possibility of applying effective selection programs to improve immunocompetence in pigs.


Assuntos
Imunocompetência/genética , Polimorfismo de Nucleotídeo Único/imunologia , Locos de Características Quantitativas/imunologia , Suínos , Animais , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Suínos/genética , Suínos/imunologia
7.
J Nutr Biochem ; 83: 108393, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32512501

RESUMO

As obesity incidence is alarmingly rising among young individuals, we aimed to characterize an experimental model of this situation, considering the similarity between human and porcine physiology. For this reason, we fed prepubertal (63 days old) Duroc breed females (n=21) either with a standard growth diet (3800 kcal/day) or one with a high-calorie content (5200 kcal/day) during 70 days. Computerized tomography, mass-spectrometry-based metabolomics and lipidomics, as well as peripheral blood mononuclear cell transcriptomics, were applied to define traits linked to high-calorie intake. Samples from a human cohort confirmed potential lipidomic markers. Compared to those fed a standard growth diet, pigs fed a high-calorie diet showed an increased weight gain (13%), much higher adiposity (53%), hypertriacylglyceridemia and hypercholesterolemia in parallel to insulin resistance. This diet induced marked changes in the circulating lipidome, particularly in phosphatidylethanolamine-type molecules. Also, circulating specific diacylglycerol and monoacylglycerol contents correlated with visceral fat and intrahepatic triacylglycerol concentrations. Specific lipids associated with obesity in swine (mainly belonging to glycerophospholipid, triacylglyceride and sterol classes) were also linked with obesity traits in the human cohort, reinforcing the usefulness of the chosen approach. Interestingly, no overt inflammation in plasma or adipose tissue was evident in this model. The presented model is useful as a preclinical surrogate of prepubertal obesity in order to ascertain the pathophysiology interactions between energy intake and obesity development.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade Infantil/etiologia , Puberdade/metabolismo , Adiposidade , Animais , Modelos Animais de Doenças , Ingestão de Alimentos , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Obesidade Infantil/metabolismo , Obesidade Infantil/fisiopatologia , Fenômica , Puberdade/genética , Triglicerídeos/sangue
8.
Sci Rep ; 10(1): 5375, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214182

RESUMO

Global prevalence of obesity has increased to epidemic proportions over the past 40 years, with childhood obesity reaching alarming rates. In this study, we determined changes in liver and adipose tissue transcriptomes of a porcine model for prepubertal early obesity induced by a high-calorie diet and supplemented with bioactive ingredients. A total of 43 nine-weeks-old animals distributed in four pens were fed with four different dietary treatments for 10 weeks: a conventional diet; a western-type diet; and a western-type diet with Bifidobacterium breve and rice hydrolysate, either adding or not omega-3 fatty acids. Animals fed a western-type diet increased body weight and total fat content and exhibited elevated serum concentrations of cholesterol, whereas animals supplemented with bioactive ingredients showed lower body weight gain and tended to accumulate less fat. An RNA-seq experiment was performed with a total of 20 animals (five per group). Differential expression analyses revealed an increase in lipogenesis, cholesterogenesis and inflammatory processes in animals on the western-type diet while the supplementation with bioactive ingredients induced fatty acid oxidation and cholesterol catabolism, and decreased adipogenesis and inflammation. These results reveal molecular mechanisms underlying the beneficial effects of bioactive ingredient supplementation in an obese pig model.


Assuntos
Obesidade Infantil/dietoterapia , Obesidade Infantil/genética , Obesidade Infantil/metabolismo , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Bifidobacterium breve/metabolismo , Peso Corporal/fisiologia , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais/microbiologia , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/metabolismo , Feminino , Metabolismo dos Lipídeos/fisiologia , Lipogênese/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Fígado/metabolismo , Obesidade/dietoterapia , Obesidade/metabolismo , Obesidade/fisiopatologia , Suínos , Transcriptoma/genética , Aumento de Peso/fisiologia
9.
J Anim Sci Biotechnol ; 11: 10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31969983

RESUMO

BACKGROUND: The role of non-coding RNAs in the porcine muscle metabolism is poorly understood, with few studies investigating their expression patterns in response to nutrient supply. Therefore, we aimed to investigate the changes in microRNAs (miRNAs), long intergenic non-coding RNAs (lincRNAs) and mRNAs muscle expression before and after food intake. RESULTS: We measured the miRNA, lincRNA and mRNA expression levels in the gluteus medius muscle of 12 gilts in a fasting condition (AL-T0) and 24 gilts fed ad libitum during either 5 h. (AL-T1, N = 12) or 7 h. (AL-T2, N = 12) prior to slaughter. The small RNA fraction was extracted from muscle samples retrieved from the 36 gilts and sequenced, whereas lincRNA and mRNA expression data were already available. In terms of mean and variance, the expression profiles of miRNAs and lincRNAs in the porcine muscle were quite different than those of mRNAs. Food intake induced the differential expression of 149 (AL-T0/AL-T1) and 435 (AL-T0/AL-T2) mRNAs, 6 (AL-T0/AL-T1) and 28 (AL-T0/AL-T2) miRNAs and none lincRNAs, while the number of differentially dispersed genes was much lower. Among the set of differentially expressed miRNAs, we identified ssc-miR-148a-3p, ssc-miR-22-3p and ssc-miR-1, which play key roles in the regulation of glucose and lipid metabolism. Besides, co-expression network analyses revealed several miRNAs that putatively interact with mRNAs playing key metabolic roles and that also showed differential expression before and after feeding. One case example was represented by seven miRNAs (ssc-miR-148a-3p, ssc-miR-151-3p, ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-421-5p, ssc-miR-493-5p and ssc-miR-503) which putatively interact with the PDK4 mRNA, one of the master regulators of glucose utilization and fatty acid oxidation. CONCLUSIONS: As a whole, our results evidence that microRNAs are likely to play an important role in the porcine skeletal muscle metabolic adaptation to nutrient availability.

10.
PLoS One ; 13(11): e0207475, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30458028

RESUMO

The aim of this work was to analyse the distribution of causal and candidate mutations associated to relevant productive traits in twenty local European pig breeds. Also, the potential of the SNP panel employed for elucidating the genetic structure and relationships among breeds was evaluated. Most relevant genes and mutations associated with pig morphological, productive, meat quality, reproductive and disease resistance traits were prioritized and analyzed in a maximum of 47 blood samples from each of the breeds (Alentejana, Apulo-Calabrese, Basque, Bísara, Majorcan Black, Black Slavonian (Crna slavonska), Casertana, Cinta Senese, Gascon, Iberian, Krskopolje (Krskopoljski), Lithuanian indigenous wattle, Lithuanian White Old Type, Mora Romagnola, Moravka, Nero Siciliano, Sarda, Schwäbisch-Hällisches Schwein (Swabian Hall pig), Swallow-Bellied Mangalitsa and Turopolje). We successfully analyzed allelic variation in 39 polymorphisms, located in 33 candidate genes. Results provide relevant information regarding genetic diversity and segregation of SNPs associated to production and quality traits. Coat color and morphological trait-genes that show low level of segregation, and fixed SNPs may be useful for traceability. On the other hand, we detected SNPs which may be useful for association studies as well as breeding programs. For instance, we observed predominance of alleles that might be unfavorable for disease resistance and boar taint in most breeds and segregation of many alleles involved in meat quality, fatness and growth traits. Overall, these findings provide a detailed catalogue of segregating candidate SNPs in 20 European local pig breeds that may be useful for traceability purposes, for association studies and for breeding schemes. Population genetic analyses based on these candidate genes are able to uncover some clues regarding the hidden genetic substructure of these populations, as the extreme genetic closeness between Iberian and Alentejana breeds and an uneven admixture of the breeds studied. The results are in agreement with available knowledge regarding breed history and management, although largest panels of neutral markers should be employed to get a deeper understanding of the population's structure and relationships.


Assuntos
Cruzamento , Genética Populacional , Locos de Características Quantitativas/genética , Suínos/genética , Animais , Genótipo , Carne , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Espanha , Suínos/classificação
11.
BMC Genomics ; 19(1): 682, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223793

RESUMO

BACKGROUND: The molecular basis of compensatory growth in monogastric animals has not yet been fully explored. Herewith, in this study we aim to determine changes in the pig skeletal muscle transcriptome profile during compensatory growth following a feed restriction period. A RNA-Seq experiment was performed with a total of 24 females belonging to a Duroc commercial line. Half of the animals received either a restricted (RE) or ad libitum (AL) diet during the first fattening period (60-125 d of age). After that, all gilts were fed ad libitum for a further ~30 d until the age of ~155 d, when animals were slaughtered and samples of gluteus medius muscle were harvested to perform RNA-Seq analyses and intramuscular fat content determination. RESULTS: During the period following food restriction, RE animals re-fed ad libitum displayed compensatory growth, showed better feed conversion rate and tended to deposit more subcutaneous fat than AL fed animals. Animals were slaughtered in the phase of accelerated growth, when RE animals had not completely compensated the performance of AL group, showing lower live and carcass weights. At intramuscular level, RE gilts showed a higher content of polyunsaturated fatty acids during the compensatory growth phase. The comparison of RE and AL expression profiles allowed the identification of 86 (ǀlog2Fold-Changeǀ > 1, padj < 0.05) differentially expressed (DE) genes. A functional categorization of these DE genes identified AMPK Signaling as the most significantly enriched canonical pathway. This kinase plays a key role in the maintenance of energy homeostasis as well as in the activation of autophagy. Among the DE genes identified as components of AMPK Signaling pathway, five out of six genes were downregulated in RE pigs. CONCLUSIONS: Animals re-fed after a restriction period exhibited a less oxidative metabolic profile and catabolic processes in muscle than animals fed ad libitum. The downregulation of autophagy observed in the skeletal muscle of pigs undergoing compensatory growth may constitute a mechanism to increase muscle mass thus ensuring an accelerated growth rate. These results reveal that the downregulation of AMPK Signaling plays an important role in compensatory growth in pigs.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Transdução de Sinais , Suínos/fisiologia , Transcriptoma , Proteínas Quinases Ativadas por AMP/genética , Ração Animal/análise , Animais , Ácidos Graxos Insaturados/análise , Feminino , Privação de Alimentos , Regulação da Expressão Gênica , Redes e Vias Metabólicas , Músculo Esquelético/metabolismo , Fenótipo , Gordura Subcutânea/crescimento & desenvolvimento , Suínos/genética , Suínos/crescimento & desenvolvimento
12.
BMC Genomics ; 18(1): 603, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28797239

RESUMO

BACKGROUND: The genetic basis of muscle fat deposition in pigs is not well known. So far, we have only identified a limited number of genes involved in the absorption, transport, storage and catabolism of lipids. Such information is crucial to interpret, from a biological perspective, the results of genome-wide association analyses for intramuscular fat content and composition traits. Herewith, we have investigated how the ingestion of food changes gene expression in the gluteus medius muscle of Duroc pigs. RESULTS: By comparing the muscle mRNA expression of fasted pigs (T0) with that of pigs sampled 5 h (T1) and 7 h (T2) after food intake, we have detected differential expression (DE) for 148 (T0-T1), 520 (T0-T2) and 135 (T1-T2) genes (q-value <0.05 and a |FC| > of 1.5). Many of these DE genes were transcription factors, suggesting that we have detected the coordinated response of the skeletal muscle to nutrient supply. We also found DE genes with a dual role in oxidative stress and angiogenesis (THBS1, THBS2 and TXNIP), two biological processes that are probably activated in the post-prandial state. Finally, we have identified several loci playing a key role in the modulation of circadian rhythms (ARNTL, PER1, PER2, BHLHE40, NR1D1, SIK1, CIART and CRY2), a result that indicates that the porcine muscle circadian clock is modulated by nutrition. CONCLUSION: We have shown that hundreds of genes change their expression in the porcine skeletal muscle in response to nutrient intake. Many of these loci do not have a known metabolic role, a result that suggests that our knowledge about the genetic basis of muscle energy homeostasis is still incomplete.


Assuntos
Ingestão de Alimentos/genética , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Biologia Computacional , Jejum/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos
13.
PLoS One ; 12(2): e0172637, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28235044

RESUMO

BACKGROUND AND PURPOSE: Interspecies variability and poor clinical translation from rodent studies indicate that large gyrencephalic animal stroke models are urgently needed. We present a proof-of-principle study describing an alternative animal model of malignant infarction of the middle cerebral artery (MCA) in the common pig and illustrate some of its potential applications. We report on metabolic patterns, ionic profile, brain partial pressure of oxygen (PtiO2), expression of sulfonylurea receptor 1 (SUR1), and the transient receptor potential melastatin 4 (TRPM4). METHODS: A 5-hour ischemic infarct of the MCA territory was performed in 5 2.5-to-3-month-old female hybrid pigs (Large White x Landrace) using a frontotemporal approach. The core and penumbra areas were intraoperatively monitored to determine the metabolic and ionic profiles. To determine the infarct volume, 2,3,5-triphenyltetrazolium chloride staining and immunohistochemistry analysis was performed to determine SUR1 and TRPM4 expression. RESULTS: PtiO2 monitoring showed an abrupt reduction in values close to 0 mmHg after MCA occlusion in the core area. Hourly cerebral microdialysis showed that the infarcted tissue was characterized by reduced concentrations of glucose (0.03 mM) and pyruvate (0.003 mM) and increases in lactate levels (8.87mM), lactate-pyruvate ratio (4202), glycerol levels (588 µM), and potassium concentration (27.9 mmol/L). Immunohistochemical analysis showed increased expression of SUR1-TRPM4 channels. CONCLUSIONS: The aim of the present proof-of-principle study was to document the feasibility of a large animal model of malignant MCA infarction by performing transcranial occlusion of the MCA in the common pig, as an alternative to lisencephalic animals. This model may be useful for detailed studies of cerebral ischemia mechanisms and the development of neuroprotective strategies.


Assuntos
Encéfalo/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/patologia , Artéria Cerebral Média/patologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Feminino , Expressão Gênica , Glucose/metabolismo , Glicerol/metabolismo , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/diagnóstico , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Ácido Láctico/metabolismo , Artéria Cerebral Média/metabolismo , Oximetria , Oxigênio/metabolismo , Pressão Parcial , Potássio/metabolismo , Ácido Pirúvico/metabolismo , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
14.
BMC Genomics ; 15: 758, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25189197

RESUMO

BACKGROUND: The genetic determinism of blood lipid concentrations, the main risk factor for atherosclerosis, is practically unknown in species other than human and mouse. Even in model organisms, little is known about how the genetic determinants of lipid traits are modulated by age-specific factors. To gain new insights into this issue, we have carried out a genome-wide association study (GWAS) for cholesterol (CHOL), triglyceride (TRIG) and low (LDL) and high (HDL) density lipoprotein concentrations measured in Duroc pigs at two time points (45 and 190 days). RESULTS: Analysis of data with mixed-model methods (EMMAX, GEMMA, GenABEL) and PLINK showed a low positional concordance between trait-associated regions (TARs) for serum lipids at 45 and 190 days. Besides, the proportion of phenotypic variance explained by SNPs at these two time points was also substantially different. The four analyses consistently detected two regions on SSC3 (124 Mb, CHOL and LDL at 190 days) and SSC6 (135 Mb, CHOL and TRIG at 190 days) with highly significant effects on the porcine blood lipid profile. Moreover, we have found that SNP variation within SSC3, SSC6, SSC10, SSC13 and SSC16 TARs is associated with the expression of several genes mapping to other chromosomes and related to lipid metabolism. CONCLUSIONS: Our data demonstrate that the effects of genomic determinants influencing lipid concentrations in pigs, as well as the amount of phenotypic variance they explain, are influenced by age-related factors.


Assuntos
Estudo de Associação Genômica Ampla , Lipídeos/sangue , Locos de Características Quantitativas , Característica Quantitativa Herdável , Suínos/sangue , Suínos/genética , Fatores Etários , Alelos , Animais , Biologia Computacional/métodos , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Fígado/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único
15.
Proteomics Clin Appl ; 8(9-10): 715-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25092613

RESUMO

Traditional biomedical models are easy to manage in experimental facilities and allow fast and affordable basic genetic studies related to human disorders, but in some cases they do not always represent the complexity of their physiology. Translational medicine demands selected models depending on the particularities of the human disease to be investigated, reproducing as closely as possible the evolution, clinical symptoms and molecular pathways, cells or tissues involved in the dysfunction. Thus, pig models offer an alternative because of their anatomical and physiological similarities to humans and the availability of genomic, transcriptomic and, progressively more, proteomic tools for analysis of this species. Furthermore, there is a wide range of natural, selected and transgenic porcine breeds. The present review provides a summary of the applications of the pig as a model for metabolic, cardiovascular, infectious diseases, xenotransplantation and neurological disorders and an overview of the possibilities that the diverse proteomic techniques offer to study these pathologies in depth.


Assuntos
Modelos Animais de Doenças , Proteômica , Animais , Humanos , Suínos
16.
Physiol Genomics ; 35(3): 199-209, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-18812458

RESUMO

The fine mapping of polymorphisms influencing cholesterol (CT), triglyceride (TG), and lipoprotein serum levels in human and mouse has provided a wealth of knowledge about the complex genetic architecture of these traits. The extension of these genetic analyses to pigs would be of utmost importance since they constitute a valuable biological and clinical model for the study of coronary artery disease and myocardial infarction. In the present work, we performed a whole genome scan for serum lipid traits in a half-sib Duroc pig population of 350 individuals. Phenotypic registers included total CT, TG, and low (LDL)- and high (HDL)-density lipoprotein serum concentrations at 45 and 190 days of age. This approach allowed us to identify two genomewide significant quantitative trait loci (QTL) for HDL-to-LDL ratio at 45 days (SSC6, 84 cM) and for TG at 190 days (SSC4, 23 cM) as well as a number of chromosomewide significant QTL. The comparison of QTL locations at 45 and 190 days revealed a notable lack of concordance at these two time points, suggesting that the effects of these QTL are age specific. Moreover, we have observed a considerable level of correspondence among the locations of the most significant porcine lipid QTL and those identified in humans. This finding might suggest that, in mammals, diverse polymorphisms located in a common set of genes are involved in the genetic variation of serum lipid levels.


Assuntos
HDL-Colesterol/sangue , LDL-Colesterol/sangue , Locos de Características Quantitativas/genética , Triglicerídeos/sangue , Animais , Mapeamento Cromossômico , Feminino , Genoma Humano , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Humanos , Masculino , Repetições de Microssatélites/genética , Fenótipo , Especificidade da Espécie , Suínos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...