Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 12(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414097

RESUMO

Circulating cell-free DNA (ccfDNA) may contain DNA originating from the tumor in plasma of cancer patients (ctDNA) and enables noninvasive cancer diagnosis, treatment predictive testing, and response monitoring. A recent multicenter evaluation of workflows by the CANCER-ID consortium using artificial spiked-in plasma showed significant differences and consequently the importance of carefully selecting ccfDNA extraction methods. Here, the quantity and integrity of extracted ccfDNA from the plasma of cancer patients were assessed. Twenty-one cancer patient-derived cell-free plasma samples were selected to compare the Qiagen CNA, Maxwell RSC ccfDNA plasma, and Zymo manual quick ccfDNA kit. High-volume citrate plasma samples collected by diagnostic leukapheresis from six cancer patients were used to compare the Qiagen CNA (2 mL) and QIAamp MinElute ccfDNA kit (8 mL). This study revealed similar integrity and similar levels of amplified short-sized fragments and tumor-specific mutants comparing the CNA and RSC kits. However, the CNA kit consistently showed the highest yield of ccfDNA and short-sized fragments, while the RSC and ME kits showed higher variant allelic frequencies (VAFs). Our study pinpoints the importance of standardizing preanalytical conditions as well as consensus on defining the input of ccfDNA to accurately detect ctDNA and be able to compare results in a clinical routine practice, within and between clinical studies.

2.
Clin Chem ; 66(1): 149-160, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628139

RESUMO

BACKGROUND: In cancer patients, circulating cell-free DNA (ccfDNA) can contain tumor-derived DNA (ctDNA), which enables noninvasive diagnosis, real-time monitoring, and treatment susceptibility testing. However, ctDNA fractions are highly variable, which challenges downstream applications. Therefore, established preanalytical work flows in combination with cost-efficient and reproducible reference materials for ccfDNA analyses are crucial for analytical validity and subsequently for clinical decision-making. METHODS: We describe the efforts of the Innovative Medicines Initiative consortium CANCER-ID (http://www.cancer-id.eu) for comparing different technologies for ccfDNA purification, quantification, and characterization in a multicenter setting. To this end, in-house generated mononucleosomal DNA (mnDNA) from lung cancer cell lines carrying known TP53 mutations was spiked in pools of plasma from healthy donors generated from 2 different blood collection tubes (BCTs). ccfDNA extraction was performed at 15 partner sites according to their respective routine practice. Downstream analysis of ccfDNA with respect to recovery, integrity, and mutation analysis was performed centralized at 4 different sites. RESULTS: We demonstrate suitability of mnDNA as a surrogate for ccfDNA as a process quality control from nucleic acid extraction to mutation detection. Although automated extraction protocols and quantitative PCR-based quantification methods yielded the most consistent and precise results, some kits preferentially recovered spiked mnDNA over endogenous ccfDNA. Mutated TP53 fragments derived from mnDNA were consistently detected using both next-generation sequencing-based deep sequencing and droplet digital PCR independently of BCT. CONCLUSIONS: This comprehensive multicenter comparison of ccfDNA preanalytical and analytical work flows is an important contribution to establishing evidence-based guidelines for clinically feasible (pre)analytical work flows.


Assuntos
Ácidos Nucleicos Livres/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Coleta de Amostras Sanguíneas , Linhagem Celular Tumoral , Ácidos Nucleicos Livres/química , Ácidos Nucleicos Livres/normas , DNA Tumoral Circulante/sangue , Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Neoplasias/genética , Neoplasias/patologia , Nucleossomos/genética , Polimorfismo de Nucleotídeo Único , Fase Pré-Analítica , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Proteína Supressora de Tumor p53/genética
3.
Oncologist ; 24(6): e387-e390, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30670599

RESUMO

In patients with a suspected malignancy, standard-of care management currently includes histopathologic examination and analysis of tumor-specific molecular abnormalities. Herein, we present a 77-year-old patient with an abdominal mass suspected to be a gastrointestinal stromal tumor (GIST) but without the possibility to collect a tumor biopsy. Cell-free DNA extracted from a blood sample was analyzed for the presence of mutations in GIST-specific genes using next generation sequencing. Furthermore, liquid biopsies were used to monitor the levels of mutant DNA copies during treatment with a tumor-specific mutation droplet digital PCR assay that correlated with the clinical and radiological response. Blood-based testing is a good alternative for biopsy-based testing. However, it should only be applied when biopsies are not available or possible to obtain because overall, in only 50%-85% of the cell-free plasma samples is the known tumor mutation detected.


Assuntos
DNA Tumoral Circulante/sangue , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Mesilato de Imatinib/uso terapêutico , Mutação , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Idoso , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Feminino , Neoplasias Gastrointestinais/sangue , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/sangue , Tumores do Estroma Gastrointestinal/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Biópsia Líquida , Reação em Cadeia da Polimerase/métodos , Prognóstico
4.
Oncotarget ; 9(17): 13870-13883, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29568401

RESUMO

BACKGROUND: Gastrointestinal stromal tumors (GISTs) are characterized by oncogenic KIT mutations that cluster in two exon 11 hotspots. The aim of this study was to develop a single, sensitive, quantitative digital droplet PCR (ddPCR) assay for the detection of common exon 11 mutations in both GIST tumor tissue and in circulating tumor DNA (ctDNA) isolated from GIST patients' plasma. METHODS: A ddPCR assay was designed using two probes that cover both hotspots. Available archival FFPE tumor tissue from 27 consecutive patients with known KIT exon 11 mutations and 9 randomly selected patients without exon 11 mutations were tested. Plasma samples were prospectively collected in a multicenter bio-databank from December 2014. ctDNA was analyzed of 22 patients with an exon 11 mutation and a baseline plasma sample. RESULTS: The ddPCR assay detected the exon 11 mutation in 21 of 22 tumors with exon 11 mutations covered by the assay. Mutations in ctDNA were detected at baseline in 13 of 14 metastasized patients, but in only 1 of 8 patients with localized disease. In serial plasma samples from 11 patients with metastasized GIST, a decrease in mutant droplets was detected during treatment. According to RECIST 1.1, 10 patients had radiological treatment response and one patient stable disease. CONCLUSION: A single ddPCR assay for the detection of multiple exon 11 mutations in ctDNA is a feasible, promising tool for monitoring treatment response in patients with metastasized GIST and should be further evaluated in a larger cohort.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...