Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(13): 7720-7739, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38922687

RESUMO

Kaposi's sarcoma-associated herpesvirus is the etiologic agent of Kaposi's sarcoma and two B-cell malignancies. Recent advancements in sequencing technologies have led to high resolution transcriptomes for several human herpesviruses that densely encode genes on both strands. However, for KSHV progress remained limited due to the overall low percentage of KSHV transcripts, even during lytic replication. To address this challenge, we have developed a target enrichment method to increase the KSHV-specific reads for both short- and long-read sequencing platforms. Furthermore, we combined this approach with the Transcriptome Resolution through Integration of Multi-platform Data (TRIMD) pipeline developed previously to annotate transcript structures. TRIMD first builds a scaffold based on long-read sequencing and validates each transcript feature with supporting evidence from Illumina RNA-Seq and deepCAGE sequencing data. Our stringent innovative approach identified 994 unique KSHV transcripts, thus providing the first high-density KSHV lytic transcriptome. We describe a plethora of novel coding and non-coding KSHV transcript isoforms with alternative untranslated regions, splice junctions and open-reading frames, thus providing deeper insights on gene expression regulation of KSHV. Interestingly, as described for Epstein-Barr virus, we identified transcription start sites that augment long-range transcription and may increase the number of latency-associated genes potentially expressed in KS tumors.


Assuntos
Processamento Alternativo , Herpesvirus Humano 8 , Transcriptoma , Herpesvirus Humano 8/genética , Humanos , Transcriptoma/genética , Transcrição Gênica , Regulação Viral da Expressão Gênica , Fases de Leitura Aberta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/genética , RNA Viral/genética , RNA Viral/metabolismo
2.
J Virol ; 97(12): e0100823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37962378

RESUMO

IMPORTANCE: The human gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus are etiologic agents of numerous B cell lymphomas. A hallmark of gammaherpesvirus infection is their ability to establish lifelong latency in B cells. However, the specific mechanisms that mediate chronic infection in B cells in vivo remain elusive. Cellular E3 ubiquitin ligases regulate numerous biological processes by catalyzing ubiquitylation and modifying protein location, function, or half-life. Many viruses hijack host ubiquitin ligases to evade antiviral host defense and promote viral fitness. Here, we used the murine gammaherpesvirus 68 in vivo system to demonstrate that the E3 ligase Cul4b is essential for this virus to establish latency in germinal center B cells. These findings highlight an essential role for this E3 ligase in promoting chronic gammaherpesvirus infection in vivo and suggest that targeted inhibition of E3 ligases may provide a novel and effective intervention strategy against gammaherpesvirus-associated diseases.


Assuntos
Linfócitos B , Gammaherpesvirinae , Infecções por Herpesviridae , Infecção Persistente , Animais , Camundongos , Linfócitos B/enzimologia , Linfócitos B/metabolismo , Linfócitos B/virologia , Proteínas Culina/metabolismo , Gammaherpesvirinae/fisiologia , Centro Germinativo/citologia , Centro Germinativo/virologia , Infecções por Herpesviridae/enzimologia , Infecções por Herpesviridae/virologia , Infecção Persistente/enzimologia , Infecção Persistente/virologia , Ubiquitinas/metabolismo , Latência Viral
3.
Proc Natl Acad Sci U S A ; 119(32): e2123362119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921433

RESUMO

The germinal center (GC) plays a central role in the generation of antigen-specific B cells and antibodies. Tight regulation of the GC is essential due to the inherent risks of tumorigenesis and autoimmunity posed by inappropriate GC B cell processes. Gammaherpesviruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) utilize numerous armaments to drive infected naïve B cells, independent of antigen, through GC reactions to expand the latently infected B cell population and establish a stable latency reservoir. We previously demonstrated that the MHV68 microRNA (miRNA) mghv-miR-M1-7-5p represses host EWSR1 (Ewing sarcoma breakpoint region 1) to promote B cell infection. EWSR1 is a transcription and splicing regulator that is recognized for its involvement as a fusion protein in Ewing sarcoma. A function for EWSR1 in B cell responses has not been previously reported. Here, we demonstrate that 1) B cell-specific deletion of EWSR1 had no effect on generation of mature B cell subsets or basal immunoglobulin levels in naïve mice, 2) repression or ablation of EWSR1 in B cells promoted expansion of MHV68 latently infected GC B cells, and 3) B cell-specific deletion of EWSR1 during a normal immune response to nonviral antigen resulted in significantly elevated numbers of antigen-specific GC B cells, plasma cells, and circulating antibodies. Notably, EWSR1 deficiency did not affect the proliferation or survival of GC B cells but instead resulted in the generation of increased numbers of precursor GC B cells. Cumulatively, these findings demonstrate that EWSR1 is a negative regulator of B cell responses.


Assuntos
Linfócitos B , Gammaherpesvirinae , Centro Germinativo , Infecções por Herpesviridae , MicroRNAs , Proteína EWS de Ligação a RNA , Infecções Tumorais por Vírus , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Gammaherpesvirinae/genética , Gammaherpesvirinae/fisiologia , Deleção de Genes , Centro Germinativo/imunologia , Centro Germinativo/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/virologia , Latência Viral
4.
mBio ; 13(3): e0083622, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35642944

RESUMO

The oncogenic gammaherpesviruses, including human Epstein-Barr virus (EBV), human Kaposi's sarcoma-associated herpesvirus (KSHV), and murine gammaherpesvirus 68 (MHV68, γHV68, MuHV-4), are associated with numerous malignancies, including B cell lymphomas and nasopharyngeal carcinoma. These viruses employ numerous molecular strategies to colonize the host, including the expression of noncoding RNAs (ncRNAs). As the first viral ncRNAs identified, EBV-encoded RNA 1 and 2 (EBER1 and EBER2, respectively) have been investigated extensively for decades; however, their specific in vivo functions remain largely unknown. In work here, we used chimeric MHV68 viruses in an in vivo complementation system to test whether EBV EBER2 contributes to acute and/or chronic phases of infection. Expression of EBER2 derived from EBV strain B95-8 resulted in a significant expansion of latently infected B cells in vivo, which was accompanied by a decrease in virus-infected plasma cells. EBV strains typically carry one of two variants of EBER2, which differ primarily by a 5-nucleotide core polymorphism identified initially in the EBV strain M81. Strikingly, mutation of the 5 nucleotides that define this core polymorphism resulted in the loss of the infected B cell expansion and restored plasma cell infection. This work reveals that the B95-8 variant of EBER2 promotes the expansion of the latently infected B cell pool in vivo and may do so in part through inhibition of terminal differentiation. These findings provide new insight into mechanisms by which viral ncRNAs promote in vivo colonization and further and provide further evidence of the inherent tumorigenic risks associated with gammaherpesvirus manipulation of B cell differentiation. IMPORTANCE The oncogenic gammaherpesviruses, including human Epstein-Barr virus (EBV), human Kaposi's sarcoma-associated herpesvirus (KSHV), and murine gammaherpesvirus 68, employ numerous strategies to colonize the host, including expression of noncoding RNAs (ncRNAs). As the first viral ncRNAs ever identified, EBV-encoded RNA 1 and 2 (EBER1 and EBER2) have been investigated extensively for decades; however, their specific in vivo functions remain largely unknown. Work here reveals that an EBV EBER2 variant highly associated with B cell lymphoma promoted a significantly increased expansion of the infected B cell pool in vivo, which coincided with altered B cell differentiation. Mutation of the 5 nucleotides that define this EBER2 variant resulted in the loss of B cell expansion and normal B cell differentiation. These findings provide new insight into the mechanisms by which EBV manipulates B cells in vivo to retain infected cells in the high-risk B cell differentiation pathway where they are poised for tumorigenesis.


Assuntos
Infecções por Vírus Epstein-Barr , Gammaherpesvirinae , Herpesvirus Humano 8 , Rhadinovirus , Animais , Infecções por Vírus Epstein-Barr/genética , Gammaherpesvirinae/genética , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/genética , Humanos , Camundongos , Nucleotídeos , Polimorfismo Genético , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Viral , Rhadinovirus/genética , Latência Viral/genética
5.
Annu Rev Virol ; 8(1): 349-371, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586873

RESUMO

Gammaherpesviruses are an important class of oncogenic pathogens that are exquisitely evolved to their respective hosts. As such, the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus (KSHV) do not naturally infect nonhuman primates or rodents. There is a clear need to fully explore mechanisms of gammaherpesvirus pathogenesis, host control, and immune evasion in the host. A gammaherpesvirus pathogen isolated from murid rodents was first reported in 1980; 40 years later, murine gammaherpesvirus 68 (MHV68, MuHV-4, γHV68) infection of laboratory mice is a well-established pathogenesis system recognized for its utility in applying state-of-the-art approaches to investigate virus-host interactions ranging from the whole host to the individual cell. Here, we highlight recent advancements in our understanding of the processes by which MHV68 colonizes the host and drives disease. Lessons that inform KSHV and EBV pathogenesis and provide future avenues for novel interventions against infection and virus-associated cancers are emphasized.


Assuntos
Infecções por Vírus Epstein-Barr , Gammaherpesvirinae , Infecções por Herpesviridae , Rhadinovirus , Animais , Herpesvirus Humano 4 , Camundongos , Latência Viral
6.
Methods Mol Biol ; 2348: 243-253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34160812

RESUMO

Viruses, like their metazoan hosts, have evolved to utilize intricate transcriptional mechanisms to generate a vast array of both coding and noncoding RNA transcripts. The resolution of specific noncoding RNA transcripts produced by viruses, particularly herpesviruses, presents a particularly difficult challenge due to their highly dense dsDNA genomes and their complex, overlapping, and context-dependent network of transcripts. While new long read sequencing platforms have facilitated the resolution of some noncoding transcripts from virus genomes, empirical molecular validation of transcripts from individual regions is essential. Herein, we demonstrate that the use of strand specific northern blots is essential for true validation of specific viral noncoding RNAs, and provide here a detailed molecular method for such an approach.


Assuntos
Northern Blotting , Homologia de Genes , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Viral/genética , Northern Blotting/métodos , Eletroforese em Gel de Poliacrilamida , Regulação Viral da Expressão Gênica , Genoma Viral , Herpesviridae/genética , Fases de Leitura Aberta , Vírus/genética
7.
PLoS Pathog ; 17(5): e1009217, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956915

RESUMO

The Epstein Barr virus (EBV) contributes to the tumor phenotype through a limited set of primarily non-coding viral RNAs, including 31 mature miRNAs. Here we investigated the impact of EBV miRNAs on remodeling the tumor cell transcriptome. Strikingly, EBV miRNAs displayed exceptionally abundant expression in primary EBV-associated Burkitt's Lymphomas (BLs) and Gastric Carcinomas (GCs). To investigate viral miRNA targeting, we used the high-resolution approach, CLASH in GC and BL cell models. Affinity constant calculations of targeting efficacies for CLASH hits showed that viral miRNAs bind their targets more effectively than their host counterparts, as did Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) miRNAs. Using public BL and GC RNA-seq datasets, we found that high EBV miRNA targeting efficacies translates to enhanced reduction of target expression. Pathway analysis of high efficacy EBV miRNA targets showed enrichment for innate and adaptive immune responses. Inhibition of the immune response by EBV miRNAs was functionally validated in vivo through the finding of inverse correlations between EBV miRNAs and immune cell infiltration and T-cell diversity in BL and GC datasets. Together, this study demonstrates that EBV miRNAs are potent effectors of the tumor transcriptome that play a role in suppressing host immune response.


Assuntos
Infecções por Vírus Epstein-Barr/imunologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/imunologia , MicroRNAs/genética , RNA Viral/genética , Complexo de Inativação Induzido por RNA/metabolismo , Transcriptoma , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Humanos , Complexo de Inativação Induzido por RNA/genética
8.
Sci Rep ; 10(1): 2371, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047224

RESUMO

Immunopathogenesis in systemic viral infections can induce a septic state with leaky capillary syndrome, disseminated coagulopathy, and high mortality with limited treatment options. Murine gammaherpesvirus-68 (MHV-68) intraperitoneal infection is a gammaherpesvirus model for producing severe vasculitis, colitis and lethal hemorrhagic pneumonia in interferon gamma receptor-deficient (IFNγR-/-) mice. In prior work, treatment with myxomavirus-derived Serp-1 or a derivative peptide S-7 (G305TTASSDTAITLIPR319) induced immune protection, reduced disease severity and improved survival after MHV-68 infection. Here, we investigate the gut bacterial microbiome in MHV-68 infection. Antibiotic suppression markedly accelerated MHV-68 pathology causing pulmonary consolidation and hemorrhage, increased mortality and specific modification of gut microbiota. Serp-1 and S-7 reduced pulmonary pathology and detectable MHV-68 with increased CD3 and CD8 cells. Treatment efficacy was lost after antibiotic treatments with associated specific changes in the gut bacterial microbiota. In summary, transkingdom host-virus-microbiome interactions in gammaherpesvirus infection influences gammaherpesviral infection severity and reduces immune modulating therapeutic efficacy.


Assuntos
Microbioma Gastrointestinal , Infecções por Herpesviridae/microbiologia , Animais , Antibacterianos/farmacologia , Infecções por Herpesviridae/tratamento farmacológico , Infecções por Herpesviridae/imunologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Linfócitos/imunologia , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/uso terapêutico , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico , Serpinas/química
9.
Proc Natl Acad Sci U S A ; 116(51): 25392-25394, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31796588

RESUMO

The oncogenic gammaherpesviruses, including human Epstein-Barr virus (EBV), human Kaposi's sarcoma-associated herpesvirus (KSHV), and murine gammaherpesvirus 68 (MHV68, γHV68, MuHV-4) establish life-long latency in circulating B cells. The precise determinants that mediate in vivo gammaherpesvirus latency and tumorigenesis remain unclear. The EBV-encoded RNAs (EBERs) are among the first noncoding RNAs ever identified and have been the subject of decades of studies; however, their biological roles during in vivo infection remain unknown. Herein, we use a series of refined virus mutants to define the active isoform of MHV68 noncoding RNA TMER4 and demonstrate that EBV EBER1 functionally conserves this activity in vivo to promote egress of infected B cells from lymph nodes into peripheral circulation.


Assuntos
Gammaherpesvirinae/genética , RNA não Traduzido , RNA Viral , Liberação de Vírus/genética , Animais , Células Cultivadas , Infecções por Herpesviridae/virologia , Camundongos , Conformação de Ácido Nucleico , RNA não Traduzido/química , RNA não Traduzido/genética , RNA não Traduzido/fisiologia , RNA Viral/química , RNA Viral/genética , RNA Viral/fisiologia , Baço/citologia , Baço/virologia , Latência Viral/genética
10.
PLoS Pathog ; 15(8): e1007843, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31393953

RESUMO

Gammaherpesviruses, including the human pathogens Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), establish lifelong latent infection in B cells and are associated with a variety of tumors. In addition to protein coding genes, these viruses encode numerous microRNAs (miRNAs) within their genomes. While putative host targets of EBV and KSHV miRNAs have been previously identified, the specific functions of these miRNAs during in vivo infection are largely unknown. Murine gammaherpesvirus 68 (MHV68) is a natural pathogen of rodents that is genetically related to both EBV and KSHV, and thus serves as an excellent model for the study of EBV and KSHV genetic elements such as miRNAs in the context of infection and disease. However, the specific targets of MHV68 miRNAs remain completely unknown. Using a technique known as qCLASH (quick crosslinking, ligation, and sequencing of hybrids), we have now identified thousands of Ago-associated, direct miRNA-mRNA interactions during lytic infection, latent infection and reactivation from latency. Validating this approach, detailed molecular analyses of specific interactions demonstrated repression of numerous host mRNA targets of MHV68 miRNAs, including Arid1a, Ctsl, Ifitm3 and Phc3. Notably, of the 1,505 MHV68 miRNA-host mRNA targets identified in B cells, 86% were shared with either EBV or KSHV, and 64% were shared among all three viruses, demonstrating significant conservation of gammaherpesvirus miRNA targeting. Pathway analysis of MHV68 miRNA targets further revealed enrichment of cellular pathways involved in protein synthesis and protein modification, including eIF2 Signaling, mTOR signaling and protein ubiquitination, pathways also enriched for targets of EBV and KSHV miRNAs. These findings provide substantial new information about specific targets of MHV68 miRNAs and shed important light on likely conserved functions of gammaherpesvirus miRNAs.


Assuntos
Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/metabolismo , MicroRNAs/genética , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Animais , Regulação da Expressão Gênica , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Camundongos , RNA Mensageiro/genética , RNA Viral/genética , RNA Viral/metabolismo , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética , Replicação Viral
11.
mBio ; 10(4)2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363027

RESUMO

Gammaherpesviruses, including the human pathogens Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), directly contribute to the genesis of multiple types of malignancies, including B cell lymphomas. In vivo, these viruses infect B cells and manipulate B cell biology to establish lifelong latent infection. To accomplish this, gammaherpesviruses employ an array of gene products, including microRNAs (miRNAs). Although numerous host mRNA targets of gammaherpesvirus miRNAs have been identified, the in vivo relevance of repression of these targets remains elusive due to species restriction. Murine gammaherpesvirus 68 (MHV68) provides a robust virus-host system to dissect the in vivo function of conserved gammaherpesvirus genetic elements. We identified here MHV68 mghv-miR-M1-7-5p as critical for in vivo infection and then validated host EWSR1 (Ewing sarcoma breakpoint region 1) as the predominant target for this miRNA. Using novel, target-specific shRNA-expressing viruses, we determined that EWSR1 repression in vivo was essential for germinal center B cell infection. These findings provide the first in vivo demonstration of the biological significance of repression of a specific host mRNA by a gammaherpesvirus miRNA.IMPORTANCE Gammaherpesviruses, including the human pathogens Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), directly contribute to the genesis of multiple types of malignancies. In vivo, these viruses infect B cells and manipulate B cell biology to establish lifelong infection. To accomplish this, gammaherpesviruses employ an array of gene products, including miRNAs, short noncoding RNAs that bind to and repress protein synthesis from specific target mRNAs. The in vivo relevance of repression of targets of gammaherpesvirus miRNAs remains highly elusive. Here, we identified a murine gammaherpesvirus miRNA as critical for in vivo infection and validated the host mRNA EWSR1 (Ewing sarcoma breakpoint region 1) as the predominant target for this miRNA. Using a novel technology, we demonstrated that repression of EWSR1 was essential for in vivo infection of the critical B cell reservoir. These findings provide the first in vivo demonstration of the significance of repression of a specific host mRNA by a gammaherpesvirus miRNA.


Assuntos
Linfócitos B/virologia , Gammaherpesvirinae/genética , Centro Germinativo/citologia , MicroRNAs/metabolismo , Proteína EWS de Ligação a RNA/genética , Animais , Gammaherpesvirinae/patogenicidade , Humanos , Camundongos , MicroRNAs/genética
12.
Cell Rep ; 27(13): 3988-4002.e5, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242428

RESUMO

The gammaherpesviruses, including Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and murine gammaherpesvirus 68 (MHV68, MuHV-4, γHV68), are etiologic agents of a wide range of lymphomas and non-hematological malignancies. These viruses possess large and highly dense dsDNA genomes that feature >80 bidirectionally positioned open reading frames (ORFs). The abundance of overlapping transcripts and extensive splicing throughout these genomes have until now prohibited high throughput-based resolution of transcript structures. Here, we integrate the capabilities of long-read sequencing with the accuracy of short-read platforms to globally resolve MHV68 transcript structures using the transcript resolution through integration of multi-platform data (TRIMD) pipeline. This approach reveals highly complex features, including: (1) pervasive overlapping transcript structures; (2) transcripts containing intra-gene or trans-gene splices that yield chimeric ORFs; (3) antisense and intergenic transcripts containing ORFs; and (4) noncoding transcripts. This work sheds light on the underappreciated complexity of gammaherpesvirus transcription and provides an extensively revised annotation of the MHV68 transcriptome.


Assuntos
Gammaherpesvirinae/metabolismo , Infecções por Herpesviridae/metabolismo , Fases de Leitura Aberta , RNA Viral/biossíntese , Transcriptoma , Animais , Estudo de Associação Genômica Ampla , Camundongos , Células NIH 3T3
13.
mBio ; 10(2)2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940699

RESUMO

After an adaptive immune response is mounted, gammaherpesviruses achieve persistence through the utilization of viral noncoding RNAs to craft a suitable host cell environment in an immunologically transparent manner. While gammaherpesvirus long noncoding RNAs (lncRNAs) and microRNAs have been recognized for some time and have been actively investigated, a recent spate of reports have now identified repertoires of the circular RNA (circRNA) class of noncoding RNAs in both the lymphocryptovirus and rhadinovirus genera of gammaherpesviruses. Despite the recent nature of these findings, the detection of circRNAs across viruses and viral gene expression programs, the conservation of some viral circRNAs, and their detection in the clinical setting already raises the spectrum of functional importance in gammaherpesvirus biology and associated malignancies. Here, we provide an overview of currently known gammaherpesvirus circular RNAs and discuss reported physical and contextual properties that may be germane to future functional studies. With the Epstein-Barr virus (EBV) circRNAome being the most extensively studied to date, our discussions will be weighted toward EBV circRNAs while also addressing circRNAs discovered in the rhesus macaque lymphocryptovirus (rLCV), the Kaposi's sarcoma herpesvirus (KSHV), and the murid gammaherpesvirus 68 (MHV68). We hope that this will help set the stage for future investigations into the functions and relevance of this new class of viral noncoding RNAs in infection and disease.


Assuntos
Gammaherpesvirinae/fisiologia , RNA Viral/genética , RNA/genética , Latência Viral , Animais , Infecções por Herpesviridae/virologia , Humanos , RNA Circular , RNA não Traduzido/genética
14.
Noncoding RNA ; 5(1)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634714

RESUMO

Gammaherpesviruses, including the human pathogens Epstein⁻Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are oncogenic viruses that establish lifelong infections in hosts and are associated with the development of lymphoproliferative diseases and lymphomas. Recent studies have shown that the majority of the mammalian genome is transcribed and gives rise to numerous long non-coding RNAs (lncRNAs). Likewise, the large double-stranded DNA virus genomes of herpesviruses undergo pervasive transcription, including the expression of many as yet uncharacterized lncRNAs. Murine gammaperherpesvirus 68 (MHV68, MuHV-4, HV68) is a natural pathogen of rodents, and is genetically and pathogenically related to EBV and KSHV, providing a highly tractable model for studies of gammaherpesvirus biology and pathogenesis. Through the integrated use of parallel data sets from multiple sequencing platforms, we previously resolved transcripts throughout the MHV68 genome, including at least 144 novel transcript isoforms. Here, we sought to molecularly validate novel transcripts identified within the M3/M2 locus, which harbors genes that code for the chemokine binding protein M3, the latency B cell signaling protein M2, and 10 microRNAs (miRNAs). Using strand-specific northern blots, we validated the presence of M3-04, a 3.91 kb polyadenylated transcript that initiates at the M3 transcription start site and reads through the M3 open reading frame (ORF), the M3 poly(a) signal sequence, and the M2 ORF. This unexpected transcript was solely localized to the nucleus, strongly suggesting that it is not translated and instead may function as a lncRNA. Use of an MHV68 mutant lacking two M3-04-antisense pre-miRNA stem loops resulted in highly increased expression of M3-04 and increased virus replication in the lungs of infected mice, demonstrating a key role for these RNAs in regulation of lytic infection. Together these findings suggest the possibility of a tripartite regulatory relationship between the lncRNA M3-04, antisense miRNAs, and the latency gene M2.

15.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30567979

RESUMO

Recent studies have identified circular RNAs (circRNAs) expressed from the Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus (KSHV) human DNA tumor viruses. To gain initial insights into the potential relevance of EBV circRNAs in virus biology and disease, we assessed the circRNAome of the interspecies homologue rhesus macaque lymphocryptovirus (rLCV) in a naturally occurring lymphoma from a simian immunodeficiency virus (SIV)-infected rhesus macaque. This analysis revealed rLCV orthologues of the latency-associated EBV circular RNAs circRPMS1_E4_E3a and circEBNA_U. Also identified in two samples displaying unusually high lytic gene expression was a novel rLCV circRNA that contains both conserved and rLCV-specific RPMS1 exons and whose backsplice junctions flank an rLCV lytic origin of replication (OriLyt). Analysis of a lytic infection model for the murid herpesvirus 68 (MHV68) rhadinovirus identified a cluster of circRNAs near an MHV68 lytic origin of replication, with the most abundant of these, circM11_ORF69, spanning the OriLyt. Lastly, analysis of KSHV latency and reactivation models revealed the latency associated circRNA originating from the vIRF4 gene as the predominant viral circRNA. Together, the results of this study broaden our appreciation for circRNA repertoires in the Lymphocryptovirus and Rhadinovirus genera of gammaherpesviruses and provide evolutionary support for viral circRNA functions in latency and viral replication.IMPORTANCE Infection with oncogenic gammaherpesviruses leads to long-term viral persistence through a dynamic interplay between the virus and the host immune system. Critical for remodeling of the host cell environment after the immune responses are viral noncoding RNAs that modulate host signaling pathways without attracting adaptive immune recognition. Despite the importance of noncoding RNAs in persistent infection, the circRNA class of noncoding RNAs has only recently been identified in gammaherpesviruses. Accordingly, their roles in virus infection and associated oncogenesis are unknown. Here we report evolutionary conservation of EBV-encoded circRNAs determined by assessing the circRNAome in rLCV-infected lymphomas from an SIV-infected rhesus macaque, and we report latent and lytic circRNAs from KSHV and MHV68. These experiments demonstrate utilization of the circular RNA class of RNAs across 4 members of the gammaherpesvirus subfamily, and they identify orthologues and potential homoplastic circRNAs, implying conserved circRNA functions in virus biology and associated malignancies.


Assuntos
Gammaherpesvirinae/genética , RNA/genética , Animais , Linhagem Celular , Regulação Viral da Expressão Gênica/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Lymphocryptovirus/genética , Macaca mulatta , Masculino , RNA Circular , RNA Viral/genética , Rhadinovirus/genética , Vírus da Imunodeficiência Símia/genética , Latência Viral/genética , Replicação Viral/genética
16.
Trends Cancer ; 4(11): 729-740, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30352676

RESUMO

EBV and KSHV are etiologic agents of multiple types of lymphomas and carcinomas. The frequency of EBV+ or KSHV+ malignancies arising in immunocompromised individuals reflects the intricate evolutionary balance established between these viruses and their immunocompetent hosts. However, the specific mechanisms by which these pathogens drive tumorigenesis remain poorly understood. In recent years an enormous array of cellular and viral noncoding RNAs (ncRNAs) have been discovered, and host ncRNAs have been revealed as contributory factors to every single cancer hallmark cellular process. As new evidence emerges that gammaherpesvirus ncRNAs also alter host processes and viral factors dysregulate host ncRNA expression, and as novel viral ncRNAs continue to be discovered, we examine the contribution of small, non-miRNA ncRNAs and long ncRNAs to gammaherpesvirus tumorigenesis.


Assuntos
Carcinogênese/genética , Gammaherpesvirinae/genética , Infecções por Herpesviridae/genética , RNA não Traduzido , RNA Viral , Animais , Infecções por Herpesviridae/complicações , Humanos
17.
Viruses ; 10(10)2018 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-30249047

RESUMO

Inflammatory bowel disease (IBD) and Clostridium difficile infection cause gastrointestinal (GI) distension and, in severe cases, toxic megacolon with risk of perforation and death. Herpesviruses have been linked to severe GI dilatation. MHV-68 is a model for human gamma herpesvirus infection inducing GI dilatation in interleukin-10 (IL-10)-deficient mice but is benign in wildtype mice. MHV-68 also causes lethal vasculitis and pulmonary hemorrhage in interferon gamma receptor-deficient (IFNγR-/-) mice, but GI dilatation has not been reported. In prior work the Myxomavirus-derived anti-inflammatory serpin, Serp-1, improved survival, reducing vasculitis and pulmonary hemorrhage in MHV-68-infected IFNγR-/- mice with significantly increased IL-10. IL-10 has been investigated as treatment for GI dilatation with variable efficacy. We report here that MHV-68 infection produces severe GI dilatation with inflammation and gut wall degradation in 28% of INFγR-/- mice. Macrophage invasion and smooth muscle degradation were accompanied by decreased concentrations of T helper (Th2), B, monocyte, and dendritic cells. Plasma and spleen IL-10 were significantly reduced in mice with GI dilatation, while interleukin-1 beta (IL-1ß), IL-6, tumor necrosis factor alpha (TNFα) and INFγ increased. Treatment of gamma herpesvirus-infected mice with exogenous IL-10 prevents severe GI inflammation and dilatation, suggesting benefit for herpesvirus-induced dilatation.


Assuntos
Dilatação Gástrica/terapia , Dilatação Gástrica/virologia , Infecções por Herpesviridae/complicações , Interleucina-10/uso terapêutico , Receptores de Interferon/genética , Rhadinovirus , Animais , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Dilatação Gástrica/genética , Dilatação Gástrica/patologia , Interleucina-10/genética , Camundongos , Camundongos Knockout , Receptores de Interferon/metabolismo , Estatísticas não Paramétricas , Receptor de Interferon gama
19.
PLoS Pathog ; 14(8): e1007206, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30080890

RESUMO

Our appreciation for the extent of Epstein Barr virus (EBV) transcriptome complexity continues to grow through findings of EBV encoded microRNAs, new long non-coding RNAs as well as the more recent discovery of over a hundred new polyadenylated lytic transcripts. Here we report an additional layer to the EBV transcriptome through the identification of a repertoire of latent and lytic viral circular RNAs. Utilizing RNase R-sequencing with cell models representing latency types I, II, and III, we identified EBV encoded circular RNAs expressed from the latency Cp promoter involving backsplicing from the W1 and W2 exons to the C1 exon, from the EBNA BamHI U fragment exon, and from the latency long non-coding RPMS1 locus. In addition, we identified circular RNAs expressed during reactivation including backsplicing from exon 8 to exon 2 of the LMP2 gene and a highly expressed circular RNA derived from intra-exonic backsplicing within the BHLF1 gene. While expression of most of these circular RNAs was found to depend on the EBV transcriptional program utilized and the transcription levels of the associated loci, expression of LMP2 exon 8 to exon 2 circular RNA was found to be cell model specific. Altogether we identified over 30 unique EBV circRNAs candidates and we validated and determined the structural features, expression profiles and nuclear/cytoplasmic distributions of several predominant and notable viral circRNAs. Further, we show that two of the EBV circular RNAs derived from the RPMS1 locus are detected in EBV positive clinical stomach cancer specimens. This study increases the known EBV latency and lytic transcriptome repertoires to include viral circular RNAs and it provides an essential foundation and resource for investigations into the functions and roles of this new class of EBV transcripts in EBV biology and diseases.


Assuntos
Regulação Viral da Expressão Gênica/genética , Herpesvirus Humano 4/genética , RNA Viral/genética , RNA/genética , Latência Viral/genética , Linhagem Celular , Infecções por Vírus Epstein-Barr/genética , Humanos , RNA Circular , RNA não Traduzido/genética
20.
PLoS Pathog ; 14(2): e1006843, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29390024

RESUMO

Gammaherpesviruses encode proteins with homology to the cellular purine metabolic enzyme formyl-glycinamide-phosphoribosyl-amidotransferase (FGARAT), but the role of these viral FGARATs (vFGARATs) in the pathogenesis of a natural host has not been investigated. We report a novel role for the ORF75A vFGARAT of murine gammaherpesvirus 68 (MHV68) in infectious virion production and colonization of mice. MHV68 mutants with premature stop codons in orf75A exhibited a log reduction in acute replication in the lungs after intranasal infection, which preceded a defect in colonization of multiple host reservoirs including the mediastinal lymph nodes, peripheral blood mononuclear cells, and the spleen. Intraperitoneal infection rescued splenic latency, but not reactivation. The 75A.stop virus also exhibited defective replication in primary fibroblast and macrophage cells. Viruses produced in the absence of ORF75A were characterized by an increase in the ratio of particles to PFU. In the next round of infection this led to the alteration of early events in lytic replication including the deposition of the ORF75C tegument protein, the accelerated kinetics of viral gene expression, and induction of TNFα release and cell death. Infecting cells to deliver equivalent genomes revealed that ORF75A was required for initiating early events in infection. In contrast with the numerous phenotypes observed in the absence of ORF75A, ORF75B was dispensable for replication and pathogenesis. These studies reveal that murine rhadinovirus vFGARAT family members ORF75A and ORF75C have evolved to perform divergent functions that promote replication and colonization of the host.


Assuntos
Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/virologia , Pulmão/virologia , Macrófagos/virologia , Fases de Leitura Aberta , Baço/virologia , Proteínas Virais/metabolismo , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Códon sem Sentido , DNA Recombinante/metabolismo , DNA Viral/metabolismo , Embrião de Mamíferos/citologia , Gammaherpesvirinae/crescimento & desenvolvimento , Gammaherpesvirinae/patogenicidade , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/patologia , Pulmão/imunologia , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Filogenia , Baço/imunologia , Baço/patologia , Carga Viral , Proteínas Virais/genética , Latência Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...