Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 11(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208956

RESUMO

This study aims to investigate the effect of operational conditions on organic fouling occurring in a direct contact membrane distillation (DCMD) system used to treat wastewater. A mixed solution of sodium alginate (SA) and bovine serum albumin (BSA) was used as a feed solution to simulate polysaccharides and proteins, respectively, assumed as the main organic foulants. The permeate flux was observed at two feed temperatures 35 and 50 °C, as well as three feed solution pH 4, 6, and 8. Higher permeate flux was observed for higher feed temperature, which allows higher vapor pressure. At higher pH, a smaller particle size was detected with lower permeate flux. A mathematical model based on mass balance was developed to simulate permeate flux with time by assuming (i) the cake formation controlled by attachment and detachment of foulant materials and (ii) the increase in specific cake resistance, the function of the cake porosity, as the main mechanisms controlling membrane fouling to investigate the fouling mechanism responsible of permeate flux decline. The model fitted well with the experimental data with R2 superior to 0.9. High specific cake resistance fostered by small particle size would be responsible for the low permeate flux observed at pH 8.

2.
Membranes (Basel) ; 11(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572959

RESUMO

The objectives in this study are to improve the performance of PVDF membrane by incorporating TiO2 and silane at various dosages and optimize fabricating conditions by using response surface methodology (RSM) for membrane distillation (MD) application. The PVDF membrane was synthesized by phase inversion method using various TiO2, silane and polymer concentrations. Membranes were characterized by performing contact angle measurements, SEM and FTIR observations. Ammonia rejection and permeate flux were measured by operating a direct contact distillation module treating ammonium chloride solution. A PVDF membrane created by adding TiO2 modified by silane improved membrane hydrophobicity. However, the effect of silane on membrane hydrophobicity was less pronounced at higher TiO2 concentrations. Highest ammonium rejection was associated with the highest membrane hydrophobicity. RSM analysis showed that fabricating conditions to achieve highest flux (10.10 L/m2·h) and ammonium rejection (100.0%) could be obtained at 31.3% silane, 2.50% TiO2, and 15.48% polymer concentrations. With a PVDF-TiO2 composite membrane for MD application, the effect of TiO2 was dependent upon silane concentration. Increasing silane concentration improved membrane hydrophobicity and ammonium rejection. RSM analysis was found to bea useful way to explore optimum fabricating conditions of membranes for the permeate flux and ammonium rejection in MD.

3.
Chemosphere ; 234: 756-762, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31238271

RESUMO

To observe feasibility of membrane distillation (MD) as post-treatment for anaerobic fluidized bed membrane bioreactor (AFMBR), removals of organic and total nitrogen were investigated by using the commercial polyvinylidene difluoride (PVDF) membrane for direct contact membrane distillation (DCMD) at various operational conditions. Test solutions for MD experiments were permeate produced by staged AFMBR (SAF-MBR), permeate from single AFMBR and synthetic wastewater fed to both reactors. Increasing in feed temperature improved permeate flux through PVDF membrane, but it decreased total nitrogen (TN) removal efficiency. Effect of chemical oxygen demand (COD) concentrations in feed solutions for DCMD on TN removal efficiency was almost negligible. However, the COD removal efficiency was lower at lower feed concentration in DCMD operation. At constant feed temperature, TN removal efficiency was improved by increasing a recirculation flow rate on PVDF membrane across DCMD system. Both organic and inorganic fouling were observed on PVDF membrane surface and pore matrix after conducting DCMD operation. The organic fouling on PVDF membrane consisted mainly of protein and fatty acids, supporting that the permeate produced by AFMBR should have potentials to foul the membrane applied in DCMD system as post-treatment.


Assuntos
Anaerobiose , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Nitrogênio/isolamento & purificação , Compostos Orgânicos/isolamento & purificação , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/normas , Desnitrificação , Destilação , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...