Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz J Biol ; 74(1): 191-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25055101

RESUMO

This study reports the occurrence and the effect of the environmental factors on the spatial and temporal distribution of the dinoflagellate Akashiwo sanguinea (Hirasaka) Hansen & Moestrup in estuarine waters of northeastern Brazil. Samples were collected at seven stations from March 2007 to February 2008 during high tide and low tide, using Van Dorn bottles. The samples were immediately fixed with Lugol and analyzed with the Utermöhl method. Water samples were also collected for the identification of the hydrological characteristics of the area. Akashiwo sanguinea occurred throughout the annual cycle and at all sampling sites with densities ranging between 5 and 410 x 103 cells.L-1. The highest densities were recorded at low tide, especially during the months of the rainy season (July: 210 x 103 cells.L-1; August: 410 x 103 cells.L-1). Density values were within the normal range and blooms were not detected. Despite being common in the area, the species showed preference for sites with high concentrations of orthophosphate and total dissolved phosphorus and with salinity in the mesohaline regime.


Assuntos
Dinoflagellida/classificação , Brasil , Monitoramento Ambiental/métodos , Estuários , Densidade Demográfica , Dinâmica Populacional , Estações do Ano
2.
Nucleic Acids Res ; 29(17): 3685-93, 2001 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11522840

RESUMO

Plant orthologs of the yeast sucrose non-fermenting (Snf1) kinase and mammalian AMP-activated protein kinase (AMPK) represent an emerging class of important regulators of metabolic and stress signalling. The catalytic alpha-subunits of plant Snf1-related kinases (SnRKs) interact in the yeast two-hybrid system with different proteins that share conserved domains with the beta- and gamma-subunits of Snf1 and AMPKs. However, due to the lack of a robust technique allowing the detection of protein interactions in plant cells, it is unknown whether these proteins indeed occur in SnRK complexes in vivo. Here we describe a double-labelling technique, using intron-tagged hemagglutinin (HA) and c-Myc epitope sequences, which provides a simple tool for co-immunopurification of interacting proteins expressed in Agrobacterium-transformed Arabidopsis cells. This generally applicable plant protein interaction assay was used to demonstrate that AKINbeta2, a plant ortholog of conserved Snf1/AMPK beta-subunits, forms different complexes with the catalytic alpha-subunits of Arabidopsis SnRK protein kinases AKIN10 and AKIN11 in vivo.


Assuntos
Arabidopsis/genética , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/citologia , Epitopos/genética , Expressão Gênica , Genes myc/genética , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde , Hemaglutininas/genética , Íntrons/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmídeos/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Subunidades Proteicas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rhizobium/genética , Transformação Genética , Técnicas do Sistema de Duplo-Híbrido
3.
EMBO J ; 20(11): 2742-56, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-11387208

RESUMO

Arabidopsis Snf1-related protein kinases (SnRKs) are implicated in pleiotropic regulation of metabolic, hormonal and stress responses through their interaction with the kinase inhibitor PRL1 WD-protein. Here we show that SKP1/ASK1, a conserved SCF (Skp1-cullin-F-box) ubiquitin ligase subunit, which suppresses the skp1-4 mitotic defect in yeast, interacts with the PRL1-binding C-terminal domains of SnRKs. The same SnRK domains recruit an SKP1/ASK1-binding proteasomal protein, alpha4/PAD1, which enhances the formation of a trimeric SnRK complex with SKP1/ASK1 in vitro. By contrast, PRL1 reduces the interaction of SKP1/ASK1 with SnRKs. SKP1/ASK1 is co-immunoprecipitated with a cullin SCF subunit (AtCUL1) and an SnRK kinase, but not with PRL1 from Arabidopsis cell extracts. SKP1/ASK1, cullin and proteasomal alpha-subunits show nuclear co-localization in differentiated Arabidopsis cells, and are observed in association with mitotic spindles and phragmoplasts during cell division. Detection of SnRK in purified 26S proteasomes and co-purification of epitope- tagged SKP1/ASK1 with SnRK, cullin and proteasomal alpha-subunits indicate that the observed protein interactions between SnRK, SKP1/ASK1 and alpha4/PAD1 are involved in proteasomal binding of an SCF ubiquitin ligase in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/enzimologia , Peptídeo Hidrolases/metabolismo , Peptídeo Sintases/metabolismo , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Hidrolases/química , Peptídeo Sintases/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Mapeamento por Restrição , Proteínas Ligases SKP Culina F-Box , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transativadores/metabolismo
4.
Planta ; 209(1): 153-60, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10467042

RESUMO

S-Adenosylmethionine decarboxylase (SAMDC; EC 4.1.1.50) is a key enzyme in the biosynthesis of the polyamines spermidine and spermine from putrescine and its activity is rate limiting in this pathway. Transgenic potato (Solanum tuberosum L. cv. Desiree) plants containing both sense and antisense SAMDC constructs driven by the tuber-specific patatin promoter have been generated and analysed. In sense transformants, developing tubers expressed higher steady-state levels of the SAMDC-specific transcript, had higher levels of SAMDC activity and contained significantly higher levels of spermidine than vector-transformed controls. Additionally, there was a significant shift in tuber size distribution with larger numbers of smaller tubers but no overall change in tuber yield. In developing tubers from the antisense transformed lines, there was a decrease in SAMDC transcript level, SAMDC activity and total polyamine levels. However, no obvious phenotypic effect was detected in the tuberisation physiology of the antisense lines.


Assuntos
Adenosilmetionina Descarboxilase/metabolismo , Solanum tuberosum/enzimologia , Adenosilmetionina Descarboxilase/genética , Expressão Gênica , Plantas Geneticamente Modificadas , Poliaminas/metabolismo , Solanum tuberosum/crescimento & desenvolvimento
5.
Infect Dis Obstet Gynecol ; 6(2): 69-71, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9702589

RESUMO

Myiasis is a parasitic infestation caused by larvae of several fly species. Diagnosis and treatment are simple. This infestation is, however, rarely seen in the vulvar area. We present a short review of the disease and the case of a 19-year-old pregnant girl with vulvar myiasis and concomitant syphilis, vaginal trichomoniasis and genital candidiasis. The patient was also positive for human immunodeficiency virus.


Assuntos
Miíase/etiologia , Doenças da Vulva/etiologia , Adulto , Feminino , Humanos , Gravidez
6.
Ann Thorac Surg ; 65(3): 779-86, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9527213

RESUMO

BACKGROUND: Chronic reflux of duodenal contents into the esophagus of rats produces severe esophagitis and exerts a co-carcinogenic effect on the proliferating cells by enhancing the formation of nitrosamine-induced esophageal carcinomas. We investigated the effect of the different components of the duodenal reflux on the epithelial cell proliferation of the lower esophagus. METHODS: Sprague-Dawley rats underwent three surgical reflux models (biliopancreatic, pancreatic, and biliary) and a sham operation. Animals were sacrificed at 72 hours, 6 weeks, and 9 weeks after the operation. Histology and cell proliferation, determined by ornithine decarboxylase activity, polyamine (putrescine, spermidine, spermine) levels, and proliferating cell nuclear antigen labeling index of the basal and suprabasal layers, were studied in the distal esophagus. RESULTS: Both biliopancreatic and pancreatic reflux induced severe esophagitis starting on week 6. Suprabasal proliferating cell nuclear antigen labeling index significantly increased throughout the 9 weeks of the study in the biliopancreatic and pancreatic reflux groups, although this increase was earlier in the former group. Ornithine decarboxylase activity and polyamine levels were significantly increased in the biliopancreatic and pancreatic groups on week 6, decreasing on week 9. CONCLUSIONS: Increased esophageal cell proliferation after both biliopancreatic and pancreatic reflux into the lower esophagus may therefore be one mechanism by which duodenal-content reflux stimulates esophageal carcinogenesis in experimental animals.


Assuntos
Refluxo Biliar/patologia , Esôfago/patologia , Pancreatopatias/patologia , Animais , Poliaminas Biogênicas/análise , Divisão Celular , Epitélio/patologia , Neoplasias Esofágicas/etiologia , Esofagite Péptica/etiologia , Masculino , Ornitina Descarboxilase/análise , Antígeno Nuclear de Célula em Proliferação/análise , Ratos , Ratos Sprague-Dawley
8.
Plant J ; 11(3): 465-73, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9107036

RESUMO

To test the possible interaction of polyamines in plant growth responses, transgenic tobacco plants containing the Avena sativa L. (oat) arginine decarboxylase (ADC) gene under the control of a tetracycline-inducible promoter were generated. Inducible overexpression of oat ADC in transgenic tobacco led to an accumulation of ADC mRNA, increased ADC activity and changes in polyamine levels. Transgenic lines, induced during vegetative stage, displayed different degrees of an altered phenotype, the severity of which was correlated with putrescine content. These phenotypic changes were characterized by short internodes, thin stems and leaves, leaf chlorosis and necrosis, as well as reduced root growth. This is the first report to show altered phenotypes as a consequence of polyamine changes under tetracycline-induction in in vivo conditions. Interestingly, overexpression of oat ADC in tobacco resulted in similar detrimental effects to those observed by ADC activation induced by osmotic stress in the homologous oat leaf system. In the context of the role of specific polyamines in plant growth and development, the present results indicate that activation of the ADC pathway leading to high levels of endogenous putrescine (or its catabolytes) is toxic for the vegetative growth of the plant. In contrast, no visible phenotypic effects were observed in flowering plants following tetracycline induction. Further characterization of the different transgenic lines may shed light on the action of specific polyamines in different plant developmental processes.


Assuntos
Avena/enzimologia , Carboxiliases/biossíntese , Plantas Geneticamente Modificadas/enzimologia , Avena/genética , Carboxiliases/genética , Carboxiliases/metabolismo , Primers do DNA , Indução Enzimática , Vetores Genéticos , Cinética , Plantas Tóxicas , Poliaminas/metabolismo , Reação em Cadeia da Polimerase , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Mapeamento por Restrição , Nicotiana
9.
DST j. bras. doenças sex. transm ; 9(1): 9-11, jan.-fev. 1997. ilus
Artigo em Português | LILACS | ID: lil-236093

RESUMO

A miíase é uma infecção parasitária causada por larvas de diversos tipos de moscas. Embora o reconhecimento e tratamento sejam fáceis, constituem uma infecção pouco freqúente na região vulvar. Este estudo apresenta uma revisão a respeito da patologia por miíase e a descrição do caso de uma adolescente de 19 anos, gestante, portadora de miíase vulvar associada à tricomoníase, candidíase e sífilis, além se ser soropositiva para HIV.


Assuntos
Humanos , Feminino , Adolescente , Doenças da Vulva/parasitologia , Miíase/terapia , Doenças da Vulva/terapia
10.
Plant Physiol ; 109(3): 771-776, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12228631

RESUMO

Plants, unlike animals, can use either ornithine decarboxylase or arginine decarboxylase (ADC) to produce the polyamine precursor putrescine. Lack of knowledge of the exact cellular and subcellular location of these enzymes has been one of the main obstacles to our understanding of the biological role of polyamines in plants. We have generated polyclonal antibodies to oat (Avena sativa L.) ADC to study the spatial distribution and subcellular localization of ADC protein in different oat tissues. By immunoblotting and immunocytochemistry, we show that ADC is organ specific. By cell fractionation and immunoblotting, we show that ADC is localized in chloroplasts associated with the thylakoid membrane. The results also show that increased levels of ADC protein are correlated with high levels of ADC activity and putrescine in osmotically stressed oat leaves. A model of compartmentalization for the arginine pathway and putrescine biosynthesis in active photosynthetic tissues has been proposed. In the context of endosymbiote-driven metabolic evolution in plants, the location of ADC in the chloroplast compartment may have major evolutionary significance, since it explains (a) why plants can use two alternative pathways for putrescine biosynthesis and (b) why animals do not possess ADC.

11.
J Chromatogr B Biomed Appl ; 666(2): 329-35, 1995 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-7633610

RESUMO

A rapid high-performance liquid chromatographic method for the separation of polyamines as their dansyl derivative has been developed. The chromatographic system used consisted of a reversed-phase column and a mobile phase of acetonitrile and water. The separation of 1,3-diaminopropane, putrescine, cadaverine, spermidine and spermine takes only 9 min. This method provides a good resolution between 1,3-diaminopropane and putrescine. It has been applied to quantify polyamines from seeds of wheat, petals of Phalaenopsis hybrids and various rat tissues.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Compostos de Dansil/química , Plantas/química , Poliaminas/análise , Animais , Ratos , Reprodutibilidade dos Testes , Espectrometria de Fluorescência
13.
Tree Physiol ; 14(2): 191-200, 1994 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14967713

RESUMO

We investigated endogenous polyamine concentrations in leaves from juvenile and mature hazel (Corylus avellana L.) shoots, as well as leaves from shoots obtained by both forced outgrowth and micropropagation of adult tissues. To determine if the observed in vitro reinvigoration was associated with polyamine metabolism, we tested the effect of serial subcultures on polyamine concentrations. Polyamines, mostly free putrescine, were higher in juvenile tissues. Adult tissues micropropagated for 14 subcultures had polyamine concentrations characteristic of juvenile tissues. However, with additional subcultures, total polyamine concentrations decreased. The putrescine to spermidine plus spermine ratio was higher in juvenile and micropropagated tissues than in adult tissues, but decreased in micropropagated tissues after 20 subcultures. This ratio may reflect a balance between vegetative growth and reproductive processes. Thus, an analysis of polyamine concentrations may provide a simple assay for determining the juvenility of plant tissues and, hence, their suitability for micropropagation.

14.
Planta ; 173(2): 282-4, 1988 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24226410

RESUMO

Three lines of evidence indicate a connection between high spermidine levels and floral initiation in thin-layer tissue cultures of Wisconsin-38 tobacco (Nicotiana tabacum L.). (1) Spermidine levels are much higher in floral buds than in vegetative buds. (2) Inhibition of spermidine synthesis by cyclohexylamine prevents the rise in spermidine titer, inhibits floral initiation and promotes the formation of vegetative buds instead. (3) Application of exogenous spermidine causes floral initiation in cultures which would otherwise form vegetative buds.

15.
Artigo em Inglês | MEDLINE | ID: mdl-11539719

RESUMO

We studied the effects of inhibitors of ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and spermidine synthase (Spd synthase) on organogenesis and the titers of polyamines (PA) and alkaloids in tobacco calli. DL-alpha-diffluromethylarginine (DFMA) and D-arginine (D-Arg), both inhibitors of ADC activity, were more effective than DL-alpha-difluromethylorinithine (DFMO), an inhibitor of ODC, in reducing titers of PA and the putrescine (Put)-derived alkaloids (nornicotine and nicotine). Dicyclohexylammonium sulfate (DCHA), an inhibitor of Spd synthase, was also more efficient than DFMO in reducing PA and alkaloid levels. Root organogenesis is inversely related to the titers of Put and alkaloids. Thus, DFMA and D-Arg, which strongly inhibit Put and alkaloid biosynthesis, markedly promote root organogenesis, while control callus with high Put and alkaloid content showed poor root organization. These results suggest that morphological differentiation is not required for activation of secondary metabolic pathways and support the view that ADC has a major role in the generation of Put going to the pyrrolidine ring of tobacco alkaloids.


Assuntos
Inibidores Enzimáticos/farmacologia , Nicotiana/fisiologia , Raízes de Plantas/fisiologia , Plantas Tóxicas , Poliaminas/antagonistas & inibidores , Poliaminas/metabolismo , Arginina , Biomassa , Carboxiliases/antagonistas & inibidores , Técnicas de Cultura , Cicloexilaminas/farmacologia , Eflornitina/farmacologia , Nicotina/análogos & derivados , Nicotina/metabolismo , Inibidores da Ornitina Descarboxilase , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Putrescina/metabolismo , Espermidina/metabolismo , Espermidina Sintase/antagonistas & inibidores , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
16.
Plant Physiol ; 82: 369-74, 1986.
Artigo em Inglês | MEDLINE | ID: mdl-11539086

RESUMO

Cereal leaves subjected to the osmotica routinely used for protoplast isolation show a rapid increase in arginine decarboxylase activity, a massive accumulation of putrescine, and slow conversion of putrescine to the higher polyamines, spermidine and spermine (HE Flores, AW Galston 1984 Plant Physiol 75: 102). Mesophyll protoplasts from these leaves, which have a high putrescine:polyamine ratio, do not undergo sustained division. By contrast, in Nicotiana, Capsicum, Datura, Trigonella, and Vigna, dicot genera that readily regenerate plants from mesophyll protoplasts, the response of leaves to osmotic stress is opposite to that in cereals. Putrescine titer as well as arginine and ornithine decarboxylase activities decline in these osmotically stressed dicot leaves, while spermidine and spermine titers increase. Thus, the putrescine:polyamine ratio in Vigna protoplasts, which divide readily, is 4-fold lower than in oat protoplasts, which divide poorly. We suggest that this differing response of polyamine metabolism to osmotic stress may account in part for the failure of cereal mesophyll protoplasts to develop readily in vitro.


Assuntos
Folhas de Planta/metabolismo , Poliaminas/metabolismo , Protoplastos/metabolismo , Putrescina/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Avena , Capsicum , Carboxiliases/metabolismo , Datura stramonium , Fabaceae , Ornitina Descarboxilase/metabolismo , Pressão Osmótica , Pisum sativum , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Plantas Medicinais , Plantas Tóxicas , Protoplastos/efeitos dos fármacos , Protoplastos/enzimologia , Sorbitol/farmacologia , Nicotiana
17.
Plant Physiol ; 82: 375-8, 1986.
Artigo em Inglês | MEDLINE | ID: mdl-11539087

RESUMO

We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.


Assuntos
Arginina/análogos & derivados , Avena/metabolismo , Carboxiliases/antagonistas & inibidores , Folhas de Planta/metabolismo , Poliaminas/metabolismo , Protoplastos/fisiologia , Arginina/farmacologia , Avena/citologia , Avena/crescimento & desenvolvimento , Divisão Celular , Leucina/metabolismo , Inibidores da Ornitina Descarboxilase , Pressão Osmótica , Folhas de Planta/efeitos dos fármacos , Putrescina/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Timidina/metabolismo , Uridina/metabolismo
18.
Phytochemistry ; 25(1): 107-10, 1986.
Artigo em Inglês | MEDLINE | ID: mdl-11539094

RESUMO

The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.


Assuntos
Carboxiliases/metabolismo , Nicotiana/metabolismo , Nicotina/análogos & derivados , Ornitina Descarboxilase/metabolismo , Plantas Tóxicas , Putrescina/metabolismo , Alcaloides/biossíntese , Arginina/análogos & derivados , Arginina/metabolismo , Arginina/farmacologia , Carboxiliases/antagonistas & inibidores , Eflornitina/farmacologia , Inibidores Enzimáticos/farmacologia , Nicotina/biossíntese , Ornitina/metabolismo , Inibidores da Ornitina Descarboxilase , Putrescina/fisiologia , Pirrolidinas/metabolismo , Nicotiana/fisiologia
19.
Plant Sci ; 38: 207-12, 1985.
Artigo em Inglês | MEDLINE | ID: mdl-11539700

RESUMO

Developing Nicotiana tabacum L. cv. Wisconsin-38 callus grown on modified Murashige-Skoog (MS) medium with Kao organic acids (pyruvic, citric, malic and fumaric acids) contains abnormally high levels of nornicotine and total alkaloids when compared with the leaves of the donor plant. Nornicotine/nicotine ratios observed during callus development suggest that nicotine is converted into nornicotine in the callus, with subsequent movement of alkaloids into roots formed on the callus and into the agar medium. Addition of Kao organic acids to the medium increases alkaloid levels, but cannot account for the abnormal increase in nicotine demethylation. This study thus reports two new findings: (a) that the total alkaloid content of tobacco callus can be greatly enhanced to 3.75% on a dry weight basis by exogenous organic acids, and (b) that endogenous nornicotine can accumulate in tobacco tissue cultures.


Assuntos
Ácidos Carboxílicos/farmacologia , Nicotiana/metabolismo , Nicotina/análogos & derivados , Plantas Tóxicas , Piridinas , Alcaloides/biossíntese , Alcaloides/metabolismo , Anabasina/biossíntese , Anabasina/metabolismo , Ácido Cítrico/farmacologia , Meios de Cultura/farmacologia , Técnicas de Cultura , Fumaratos/farmacologia , Malatos/farmacologia , Nicotina/biossíntese , Nicotina/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Pirrolidinas/metabolismo , Ácido Pirúvico/farmacologia , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento
20.
Plant Physiol ; 78: 323-6, 1985.
Artigo em Inglês | MEDLINE | ID: mdl-11540098

RESUMO

Since the diamine putrescine can be metabolized into the pyrrolidine ring of tobacco alkaloids as well as into the higher polyamines, we have investigated the quantitative relationship between putrescine and these metabolites in tobacco callus cultured in vitro. We measured levels of free and conjugated putrescine and spermidine, and pyrrolidine alkaloids, as well as activities of the putrescine-biosynthetic enzymes arginine and ornithine decarboxylase. In callus grown on high (11.5 micromolar) alpha-naphthalene acetic acid, suboptimal for alkaloid biosynthesis, putrescine and spermidine conjugates were the main putrescine derivatives, while in callus grown on low (1.5 micromolar) alpha-naphthalene acetic acid, optimal for alkaloid formation, nornicotine and nicotine were the main putrescine derivatives. During callus development, a significant negative correlation was found between levels of perchloric acid-soluble putrescine conjugates and pyrrolidine alkaloids. The results suggest that bound putrescine can act as a pool for pyrrolidine alkaloid formation in systems where alkaloid biosynthesis is active. In addition, changes in arginine decarboxylase activity corresponding to increased alkaloid levels suggest a role for this enzyme in the overall biosynthesis of pyrrolidine alkaloids.


Assuntos
Poliaminas Biogênicas/metabolismo , Nicotiana/metabolismo , Nicotina/análogos & derivados , Plantas Tóxicas , Putrescina/metabolismo , Alcaloides/biossíntese , Alcaloides/metabolismo , Poliaminas Biogênicas/biossíntese , Carboxiliases/metabolismo , Meios de Cultura , Ácidos Naftalenoacéticos/farmacologia , Nicotina/biossíntese , Nicotina/metabolismo , Ornitina Descarboxilase/metabolismo , Pirrolidinas/metabolismo , Espermidina/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/enzimologia , Nicotiana/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...