Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 188(2): 683-702, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235660

RESUMO

The documentation of plant growth and development requires integrative and scalable approaches to investigate and spatiotemporally resolve various dynamic processes at different levels of plant body organization. The present update deals with vigorous developments in mesoscopy, microscopy and nanoscopy methods that have been translated to imaging of plant subcellular compartments, cells, tissues and organs over the past 3 years with the aim to report recent applications and reasonable expectations from current light-sheet fluorescence microscopy (LSFM) and super-resolution microscopy (SRM) modalities. Moreover, the shortcomings and limitations of existing LSFM and SRM are discussed, particularly for their ability to accommodate plant samples and regarding their documentation potential considering spherical aberrations or temporal restrictions prohibiting the dynamic recording of fast cellular processes at the three dimensions. For a more comprehensive description, advances in living or fixed sample preparation methods are also included, supported by an overview of developments in labeling strategies successfully applied in plants. These strategies are practically documented by current applications employing model plant Arabidopsis thaliana (L.) Heynh., but also robust crop species such as Medicago sativa L. and Hordeum vulgare L. Over the past few years, the trend towards designing of integrative microscopic modalities has become apparent and it is expected that in the near future LSFM and SRM will be bridged to achieve broader multiscale plant imaging with a single platform.


Assuntos
Microscopia de Fluorescência/métodos , Células Vegetais/ultraestrutura , Desenvolvimento Vegetal
2.
Plant Physiol ; 188(3): 1563-1585, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986267

RESUMO

Arabidopsis (Arabidopsis thaliana) root hairs develop as long tubular extensions from the rootward pole of trichoblasts and exert polarized tip growth. The establishment and maintenance of root hair polarity is a complex process involving the local apical production of reactive oxygen species generated by A. thaliana nicotinamide adenine dinucleotide phosphate (NADPH) oxidase respiratory burst oxidase homolog protein C/ROOT HAIR-DEFECTIVE 2 (AtRBOHC/RHD2). Loss-of-function root hair defective 2 (rhd2) mutants have short root hairs that are unable to elongate by tip growth, and this phenotype is fully complemented by GREEN FLUORESCENT PROTEIN (GFP)-RHD2 expressed under the RHD2 promoter. However, the spatiotemporal mechanism of AtRBOHC/RHD2 subcellular redistribution and delivery to the plasma membrane (PM) during root hair initiation and tip growth are still unclear. Here, we used advanced microscopy for detailed qualitative and quantitative analysis of vesicular compartments containing GFP-RHD2 and characterization of their movements in developing bulges and growing root hairs. These compartments, identified by an independent molecular marker mCherry-VTI12 as the trans-Golgi network (TGN), deliver GFP-RHD2 to the apical PM domain, the extent of which corresponds with the stage of root hair formation. Movements of TGN/early endosomes, but not late endosomes, were affected in the bulging domains of the rhd2-1 mutant. Finally, we revealed that structural sterols might be involved in the accumulation, docking, and incorporation of TGN compartments containing GFP-RHD2 to the apical PM of root hairs. These results help in clarifying the mechanism of polarized AtRBOHC/RHD2 targeting, maintenance, and recycling at the apical PM domain, coordinated with different developmental stages of root hair initiation and growth.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Membrana Celular/metabolismo , Organogênese Vegetal/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Tricomas/crescimento & desenvolvimento , Membrana Celular/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação , Tricomas/genética
3.
Plant Biotechnol J ; 19(4): 767-784, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33112469

RESUMO

Nitrogen-fixing rhizobia and legumes have developed complex mutualistic mechanism that allows to convert atmospheric nitrogen into ammonia. Signalling by mitogen-activated protein kinases (MAPKs) seems to be involved in this symbiotic interaction. Previously, we reported that stress-induced MAPK (SIMK) shows predominantly nuclear localization in alfalfa root epidermal cells. Nevertheless, SIMK is activated and relocalized to the tips of growing root hairs during their development. SIMK kinase (SIMKK) is a well-known upstream activator of SIMK. Here, we characterized production parameters of transgenic alfalfa plants with genetically manipulated SIMK after infection with Sinorhizobium meliloti. SIMKK RNAi lines, causing strong downregulation of both SIMKK and SIMK, showed reduced root hair growth and lower capacity to form infection threads and nodules. In contrast, constitutive overexpression of GFP-tagged SIMK promoted root hair growth as well as infection thread and nodule clustering. Moreover, SIMKK and SIMK downregulation led to decrease, while overexpression of GFP-tagged SIMK led to increase of biomass in above-ground part of plants. These data suggest that genetic manipulations causing downregulation or overexpression of SIMK affect root hair, nodule and shoot formation patterns in alfalfa, and point to the new biotechnological potential of this MAPK.


Assuntos
Medicago sativa , Proteínas de Plantas , Biomassa , Análise por Conglomerados , Medicago sativa/genética , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas de Plantas/genética , Simbiose/genética
4.
Methods Cell Biol ; 160: 237-251, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32896319

RESUMO

Study of microtubules on cellular and subcellular levels is compromised by limited resolution of conventional fluorescence microscopy. However, it is possible to improve Abbe's diffraction-limited resolution by employment of super-resolution microscopy methods. Two of them, described herein, are structured-illumination microscopy (SIM) and Airyscan laser scanning microscopy (AM). Both methods allow high-resolution imaging of cortical microtubules in plant cells, thus contributing to the current knowledge on plant morphogenesis, growth and development. Both SIM and AM provide certain advantages and characteristic features, which are described here. We present immunofluorescence localization methods for microtubules in fixed plant cells achieving high signal efficiency, superb sample stability and sub-diffraction resolution. These protocols were developed for whole-mount immunolabeling of root samples of legume crop species Medicago sativa. They also contain tips for optimal sample preparation of plants germinated from seeds as well as plantlets regenerated from somatic embryos in vitro. We describe in detail all steps of optimized protocols for sample preparation, microtubule immunolabeling and super-resolution imaging.


Assuntos
Imageamento Tridimensional/métodos , Medicago sativa/metabolismo , Microtúbulos/metabolismo , Medicago sativa/citologia , Microscopia Confocal , Epiderme Vegetal/citologia , Raízes de Plantas/citologia , Plântula/metabolismo
5.
Crit Rev Biotechnol ; 40(8): 1265-1280, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32942912

RESUMO

Current research needs to be more focused on agronomical plants to effectively utilize the knowledge obtained from model plant species. Efforts to improve legumes have long employed common breeding tools. Recently, biotechnological approaches facilitated the development of improved legumes with new traits, allowing them to withstand climatic changes and biotic stress. Owing to its multiple uses and profits, alfalfa (Medicago sativa L.) has become a prominent forage crop worldwide. This review provides a comprehensive research summary of tissue culture-based genetic transformation methods, which could be exploited for the development of transgenic alfalfa with agronomically desirable traits. Moreover, advanced bio-imaging approaches, including cutting-edge microscopy and phenotyping, are outlined here. Finally, characterization and the employment of beneficial microbes should help to produce biotechnologically improved and sustainable alfalfa cultivars.


Assuntos
Biotecnologia/métodos , Microscopia/métodos , Técnicas de Cultura de Tecidos/métodos , Transformação Genética , Eletroporação , Medicago sativa/genética , Microbiota , Fixação de Nitrogênio , Plantas Geneticamente Modificadas/genética , Simbolismo
6.
Front Plant Sci ; 11: 1153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849711

RESUMO

Annexin 1 (ANN1) is the most abundant member of the evolutionary conserved multigene protein superfamily of annexins in plants. Generally, annexins participate in diverse cellular processes, such as cell growth, differentiation, vesicle trafficking, and stress responses. The expression of annexins is developmentally regulated, and it is sensitive to the external environment. ANN1 is expressed in almost all Arabidopsis tissues, while the most abundant is in the root, root hairs, and in the hypocotyl epidermal cells. Annexins were also occasionally proposed to associate with cytoskeleton and vesicles, but they were never developmentally localized at the subcellular level in diverse plant tissues and organs. Using advanced light-sheet fluorescence microscopy (LSFM), we followed the developmental and subcellular localization of GFP-tagged ANN1 in post-embryonic Arabidopsis organs. By contrast to conventional microscopy, LSFM allowed long-term imaging of ANN1-GFP in Arabidopsis plants at near-environmental conditions without affecting plant viability. We studied developmental regulation of ANN1-GFP expression and localization in growing Arabidopsis roots: strong accumulation was found in the root cap and epidermal cells (preferentially in elongating trichoblasts), but it was depleted in dividing cells localized in deeper layers of the root meristem. During root hair development, ANN1-GFP accumulated at the tips of emerging and growing root hairs, which was accompanied by decreased abundance in the trichoblasts. In aerial plant parts, ANN1-GFP was localized mainly in the cortical cytoplasm of trichomes and epidermal cells of hypocotyls, cotyledons, true leaves, and their petioles. At the subcellular level, ANN1-GFP was enriched at the plasma membrane (PM) and vesicles of non-dividing cells and in mitotic and cytokinetic microtubular arrays of dividing cells. Additionally, an independent immunolocalization method confirmed ANN1-GFP association with mitotic and cytokinetic microtubules (PPBs and phragmoplasts) in dividing cells of the lateral root cap. Lattice LSFM revealed subcellular accumulation of ANN1-GFP around the nuclear envelope of elongating trichoblasts. Massive relocation and accumulation of ANN1-GFP at the PM and in Hechtian strands and reticulum in plasmolyzed cells suggest a possible osmoprotective role of ANN1-GFP during plasmolysis/deplasmolysis cycle. This study shows complex developmental and subcellular localization patterns of ANN1 in living Arabidopsis plants.

7.
Front Plant Sci ; 11: 592, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508859

RESUMO

For several decades, researchers are working to develop improved major crops with better adaptability and tolerance to environmental stresses. Forage legumes have been widely spread in the world due to their great ecological and economic values. Abiotic and biotic stresses are main factors limiting legume production, however, alfalfa (Medicago sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts focused on alfalfa improvements have led to the release of cultivars with new traits of agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa has very high nutritional value due to its efficient symbiotic association with nitrogen-fixing bacteria, while deep root system can help to prevent soil water loss in dry lands. The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet. Identification, isolation, and improvement of genes involved in abiotic or biotic stress response significantly contributed to the progress of our understanding how crop plants cope with these environmental challenges. In this review, we provide an overview of the progress that has been made in high-throughput sequencing, characterization of genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and metabolomics techniques bearing biotechnological potential for alfalfa improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...