Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(33): e2302650, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37818758

RESUMO

Transport of excitons in organic materials can be enhanced through polariton formation when the interaction strength between these excitons and the confined light modes of an optical resonator exceeds their decay rates. While the polariton lifetime is determined by the Q(uality)-factor of the optical resonator, the polariton group velocity is not. Instead, the latter is solely determined by the polariton dispersion. Yet, experiments suggest that the Q-factor also controls the polariton propagation velocity. To understand this observation, the authors perform molecular dynamics simulations of Rhodamine chromophores strongly coupled to Fabry-Pérot cavities with various Q-factors. The results suggest that propagation in the aforementioned experiments is initially dominated by ballistic motion of upper polariton states at their group velocities, which leads to a rapid expansion of the wavepacket. Cavity decay in combination with non-adiabatic population transfer into dark states, rapidly depletes these bright states, causing the wavepacket to contract. However, because population transfer is reversible, propagation continues, but as a diffusion process, at lower velocity. By controlling the lifetime of bright states, the Q-factor determines the duration of the ballistic phase and the diffusion coefficient in the diffusive regime. Thus, polariton propagation in organic microcavities can be effectively tuned through the Q-factor.

2.
Nat Commun ; 14(1): 6613, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857599

RESUMO

Exciton transport can be enhanced in the strong coupling regime where excitons hybridize with confined light modes to form polaritons. Because polaritons have group velocity, their propagation should be ballistic and long-ranged. However, experiments indicate that organic polaritons propagate in a diffusive manner and more slowly than their group velocity. Here, we resolve this controversy by means of molecular dynamics simulations of Rhodamine molecules in a Fabry-Pérot cavity. Our results suggest that polariton propagation is limited by the cavity lifetime and appears diffusive due to reversible population transfers between polaritonic states that propagate ballistically at their group velocity, and dark states that are stationary. Furthermore, because long-lived dark states transiently trap the excitation, propagation is observed on timescales beyond the intrinsic polariton lifetime. These insights not only help to better understand and interpret experimental observations, but also pave the way towards rational design of molecule-cavity systems for coherent exciton transport.

3.
ACS Photonics ; 9(7): 2263-2272, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35880071

RESUMO

Exciton transport in most organic materials is based on an incoherent hopping process between neighboring molecules. This process is very slow, setting a limit to the performance of organic optoelectronic devices. In this Article, we overcome the incoherent exciton transport by strongly coupling localized singlet excitations in a tetracene crystal to confined light modes in an array of plasmonic nanoparticles. We image the transport of the resulting exciton-polaritons in Fourier space at various distances from the excitation to directly probe their propagation length as a function of the exciton to photon fraction. Exciton-polaritons with an exciton fraction of 50% show a propagation length of 4.4 µm, which is an increase by 2 orders of magnitude compared to the singlet exciton diffusion length. This remarkable increase has been qualitatively confirmed with both finite-difference time-domain simulations and atomistic multiscale molecular dynamics simulations. Furthermore, we observe that the propagation length is modified when the dipole moment of the exciton transition is either parallel or perpendicular to the cavity field, which opens a new avenue for controlling the anisotropy of the exciton flow in organic crystals. The enhanced exciton-polariton transport reported here may contribute to the development of organic devices with lower recombination losses and improved performance.

4.
J Phys Chem Lett ; 13(27): 6259-6267, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35771724

RESUMO

The strong light-matter coupling regime, in which excitations of materials hybridize with excitations of confined light modes into polaritons, holds great promise in various areas of science and technology. A key aspect for all applications of polaritonic chemistry is the relaxation into the lower polaritonic states. Polariton relaxation is speculated to involve two separate processes: vibrationally assisted scattering (VAS) and radiative pumping (RP), but the driving forces underlying these two mechanisms are not fully understood. To provide mechanistic insights, we performed multiscale molecular dynamics simulations of tetracene molecules strongly coupled to the confined light modes of an optical cavity. The results suggest that both mechanisms are driven by the same molecular vibrations that induce relaxation through nonadiabatic coupling between dark states and polaritonic states. Identifying these vibrational modes provides a rationale for enhanced relaxation into the lower polariton when the cavity detuning is resonant with specific vibrational transitions.

5.
J Chem Phys ; 154(10): 104112, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33722041

RESUMO

Coupling molecules to the confined light modes of an optical cavity is showing great promise for manipulating chemical reactions. However, to fully exploit this principle and use cavities as a new tool for controlling chemistry, a complete understanding of the effects of strong light-matter coupling on molecular dynamics and reactivity is required. While quantum chemistry can provide atomistic insight into the reactivity of uncoupled molecules, the possibilities to also explore strongly coupled systems are still rather limited due to the challenges associated with an accurate description of the cavity in such calculations. Despite recent progress in introducing strong coupling effects into quantum chemistry calculations, applications are mostly restricted to single or simplified molecules in ideal lossless cavities that support a single light mode only. However, even if commonly used planar mirror micro-cavities are characterized by a fundamental mode with a frequency determined by the distance between the mirrors, the cavity energy also depends on the wave vector of the incident light rays. To account for this dependency, called cavity dispersion, in atomistic simulations of molecules in optical cavities, we have extended our multi-scale molecular dynamics model for strongly coupled molecular ensembles to include multiple confined light modes. To validate the new model, we have performed simulations of up to 512 Rhodamine molecules in red-detuned Fabry-Pérot cavities. The results of our simulations suggest that after resonant excitation into the upper polariton at a fixed wave vector, or incidence angle, the coupled cavity-molecule system rapidly decays into dark states that lack dispersion. Slower relaxation from the dark state manifold into both the upper and lower bright polaritons causes observable photo-luminescence from the molecule-cavity system along the two polariton dispersion branches that ultimately evolves toward the bottom of the lower polariton branch, in line with experimental observations. We anticipate that the more realistic cavity description in our approach will help to better understand and predict how cavities can modify molecular properties.

6.
J Phys Chem B ; 123(18): 3935-3944, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30991803

RESUMO

p21ras protein activity, regulated by GTP hydrolysis, constitutes an active field of research for the development of cancer targeted therapies that would concern ∼30% of human tumors to which specific mutations have been associated. Indeed, the catalyzing mechanisms provided by the protein environment during GTP hydrolysis and how they are impaired by specific mutations remain to be fully elucidated. In this article, we present results from molecular mechanics (MM) molecular dynamics (MD) simulations and density functional theory (DFT) calculations carried out for wild-type p21 N-ras and six Gln 61 mutants. In the first part, we present the water distribution within the active site of the wild-type protein according to MM MD. Significant differences are observed when comparing the results to the previous distribution assessed through quantum mechanics/molecular mechanics (QM/MM) MD. Such method-dependent results highlight the importance of accounting for the electrostatic coupling between the protein complex and the solvent molecules in identifying hydration sites. In the second part, we present the results from DFT calculations performed to determine the electronic distribution of the GTP ligand, considering the wild-type active site arrangement according to both classical and hybrid approaches. Only in the QM/MM-based configuration is the ligand electronic density similar to that of a GDP-like state observed experimentally. For this reason, in the last set of calculations carried out for p21 N-ras Gln 61 mutants, only the active site structural conformations obtained through hybrid MD are considered. Through the analysis of the GTP electronic density, we conclude that the wild-type active site arrangement according to QM/MM MD is closer to a catalytically efficient conformation of the protein than the arrangement according to MM MD. Hence, water distribution according to the hybrid approach must correspond to the optimal placement of solvent in the active site. Within all of the studied Gln 61 substituted proteins, p21ras major catalyzing effect, which consists of stabilizing a more GDP-like state, is lost.


Assuntos
Elétrons , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas p21(ras)/química , Teoria Quântica , Água/química , Hidrólise , Conformação Proteica , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
7.
Biophys J ; 115(8): 1417-1430, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30224050

RESUMO

Point mutations in p21ras are associated with ∼30% of human tumors by disrupting its GTP hydrolysis cycle, which is critical to its molecular switch function in cellular signaling pathways. In this work, we investigate the impact of Gln 61 substitutions in the structure of the p21N-ras active site and particularly focus on water reorganization around GTP, which appears to be crucial to evaluate favorable and unfavorable hydration sites for hydrolysis. The NRas-GTP complex is analyzed using a hybrid quantum mechanics/molecular mechanics approach, treating for the first time to our knowledge transient water molecules at the ab initio level and leading to results that account for the electrostatic coupling between the protein complex and the solvent. We show that for the wild-type protein, water molecules are found around the GTP γ-phosphate group, forming an arch extended from residues 12 to 35. Two density peaks are observed, supporting previous results that suggest the presence of two water molecules in the active site, one in the vicinity of residue 35 and a second one stabilized by hydrogen bonds formed with nitrogen backbone atoms of residues 12 and 60. The structural changes observed in NRas Gln 61 mutants result in the drastic delocalization of water molecules that we discuss. In mutants Q61H and Q61K, for which water distribution is overlocalized next to residue 60, the second density peak supports the hypothesis of a second water molecule. We also conclude that Gly 60 indirectly participates in GTP hydrolysis by correctly positioning transient water molecules in the protein complex and that Gln 61 has an indirect steric effect in stabilizing the preorganized catalytic site.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Glutamina/química , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Proteínas Mutantes/metabolismo , Água/metabolismo , Sítios de Ligação , Domínio Catalítico , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Glutamina/genética , Humanos , Ligação de Hidrogênio , Hidrólise , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação , Conformação Proteica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...