Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(9)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027355

RESUMO

Ni, Co, Mg, and Al mixed-oxide solids, synthesized via the hydrotalcite route, were investigated in previous works toward the dry reforming of methane for hydrogen production. The oxide Co2Ni2Mg2Al2 calcined at 800 °C, Co2Ni2Mg2Al2800, showed the highest catalytic activity in the studied series, which was ascribable to an interaction between Ni and Co, which is optimal for this Co/Ni ratio. In the present study, Co2Ni2Mg2Al2800 was compared to a commercial catalyst widely used in the industry, Ni(50%)/Al2O3, and showed better activity despite its lower number of active sites, as well as lower amounts of carbon on its surface, i.e. less deactivation. In addition to this, Co2Ni2Mg2Al2800 showed stability for 20 h under stream during the dry reforming of methane. This good durability is attributed to a periodic cycle of carbon deposition and removal as well as to the strong interaction between Ni and Co, preventing the deactivation of the catalyst. The evaluation of the catalytic performances in the presence of toluene, which is an impurity that exists in biogas, is also a part of this work. In the presence of toluene, the catalytic activity of Co2Ni2Mg2Al2800 decreases, and higher carbon formation on the catalyst surface is detected. Toluene adsorption on catalytic sites, side reactions performed by toluene, and the competition between toluene and methane in the reaction with carbon dioxide are the main reasons for such results.

2.
Environ Sci Pollut Res Int ; 24(11): 9907-9913, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27552997

RESUMO

The performances of different 5Cu/CoxMg6-xAl2 (x = 0; 2; 4; 6) catalysts prepared by the wet impregnation method were investigated in the ethanol steam-reforming reaction (ESR) at 450 °C during 4 h under a steam/ethanol ratio of 3 (S/E = 3). The best catalyst among the prepared solids was 5Cu/Co6Al2 as it showed a complete ethanol conversion and the highest hydrogen and carbon dioxide productivities. However, following 50 h of aging, the catalyst deactivated due to the formation of a high amount of carbonaceous products detected by differential scanning calorimetry/thermogravimetry. On the other hand, the 5Cu/Co2Mg4Al2 catalyst showed a much lower quantity of coke deposition with no deactivation due to the basic character conferred by the magnesium oxide phase.


Assuntos
Etanol , Vapor , Hidróxido de Alumínio , Catálise , Hidrogênio , Hidróxido de Magnésio
3.
Environ Sci Pollut Res Int ; 23(22): 22744-22760, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27562810

RESUMO

Hydrogen production by methane dry reforming is an important yet challenging process. A performing catalyst will favor the thermodynamic equilibrium while ensuring good hydrogen selectivity. We hereby report the synthesis of Co x Mg6-x Al2 (with x = 2 and 6) mixed oxide catalysts synthesized via hydrotalcite precursors and the synthesis of a ruthenium-based catalyst on a cobalt, magnesium, and aluminum mixed oxide supports Ru/Co x Mg6-x Al2 (with x = 2 and 6). The impregnation of ruthenium on the hydrotalcites was performed in two ways: by impregnation on the dried hydrotalcite and by memory effect on hydrotalcite calcined at 500 °C. The deposition of ruthenium by memory effect of the magnesium and cobalt support allows the generation of both metallic and basic sites which provides an active and stable catalyst for the dry reforming reaction of methane.


Assuntos
Hidróxido de Alumínio/química , Dióxido de Carbono/química , Cobalto/química , Hidróxido de Magnésio/química , Metano/química , Rutênio/química , Alumínio , Catálise , Fontes Geradoras de Energia , Hidrogênio , Magnésio , Óxidos
4.
ChemSusChem ; 4(10): 1420-30, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21957051

RESUMO

The use of porous materials to eliminate volatile organic compounds (VOCs) has proven very effective towards achieving sustainability and environmental protection goals. The activity of zeolites and macro-mesoporous metal-oxide supports in the total oxidation of VOCs has been investigated, with and without noble-metal deposition, to develop highly active catalyst systems where the formation of by-products was minimal. The first catalysts employed were zeolites, which offered a good activity in the oxidation of VOCs, but were rapidly deactivated by coke deposition. The effects of the acido-basicity and ionic exchange of these zeolites showed that a higher basicity was related to exchanged ions with lower electronegativities, resulting in better catalytic performances in the elimination of VOCs. Following on from this work, noble metals were deposited onto macro-mesoporous metal-oxide supports to form mono and bimetallic catalysts. These were then tested in the oxidation of toluene to study their catalytic performance and their deactivation process. PdAu/TiO(2) and PdAu/TiO(2) -ZrO(2) 80/20 catalysts demonstrated the best activity and life span in the oxidation of toluene and propene and offered the lowest temperatures for a 50 % conversion of VOCs and the lowest coke content after catalytic testing. Different characterization techniques were employed to explain the changes occurring in catalyst structure during the oxidation of toluene and propene.


Assuntos
Poluentes Atmosféricos/química , Recuperação e Remediação Ambiental/métodos , Metais/química , Óxidos/química , Compostos Orgânicos Voláteis/química , Catálise , Oxirredução , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...