Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171309, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423308

RESUMO

Increasing evidence demonstrates that anthropogenic noise is a global pollutant that threatens marine ecosystems. Mounting numbers of studies show its diverse effects on individuals and their behaviour. However, little is known about how individual changes in response to anthropogenic noise could cascade through groups and populations affecting resource distribution vital for survival and fitness. Here we test the hypotheses that anthropogenic noise could alter resource distribution, associated hierarchies and consequently individual benefits. We used groups of hermit crabs, a globally distributed model system for assessing impacts of environmental change on wildlife and measured in controlled laboratory conditions the resource distribution of their reusable shelters (gastropod shells) under ship noise and ambient control playbacks. We applied vacancy chain theory to test three predictions about how new resource units create benefits for a population. A new resource unit leads to (i) a cascade of resource abandonments and acquisitions (= chain of vacancy moves) based on an internal (ii) hierarchy (here size-based) which allows (iii) more than one individual to benefit. All three predictions were supported under control sound. Under anthropogenic noise however, fewer individuals benefitted from the arrival of a new, empty shell, while the size-based hierarchy was maintained. The latter was apparent in chain structures, which were concordant between sound treatments. This experiment shows that anthropogenic noise can affect individual behaviours that cascade through groups. This has the potential to disrupt wider resource distribution in populations.


Assuntos
Comportamento Animal , Ecossistema , Humanos , Animais , Comportamento Animal/fisiologia , Hierarquia Social , Ruído , Som
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220363, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37899009

RESUMO

Sessile marine invertebrates play a vital role as ecosystem engineers and in benthic-pelagic coupling. Most benthic fauna develop through larval stages and the importance of natural light cycles for larval biology and ecology is long-established. Natural light-dark cycles regulate two of the largest ocean-scale processes that are fundamental to larvae's life cycle: the timing of broadcast spawning for successful fertilization and diel vertical migration for foraging and predator avoidance. Given the reliance on light and the ecological role of larvae, surprisingly little is known about the impacts of artificial light at night (ALAN) on the early life history of habitat-forming species. We quantified ALAN impacts on larval performance (survival, growth, development) of two cosmopolitan ecosystem engineers in temperate marine ecosystems, the mussel Mytilus edulis and the barnacle Austrominius modestus. Higher ALAN irradiance reduced survival in both species (57% and 13%, respectively). ALAN effects on development and growth were small overall, and different between species, time-points and parentage. Our results show that ALAN adversely affects larval survival and reiterates the importance of paternal influence on offspring performance. ALAN impacts on the early life stages of ecosystem engineering species have implications not only for population viability but also the ecological communities that these species support. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Assuntos
Ecossistema , Poluição Luminosa , Animais , Larva/fisiologia , Estágios do Ciclo de Vida , Organismos Aquáticos , Luz
3.
Nat Commun ; 14(1): 2511, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188683

RESUMO

Coral broadcast spawning events - in which gametes are released on certain nights predictably in relation to lunar cycles - are critical to the maintenance and recovery of coral reefs following mass mortality. Artificial light at night (ALAN) from coastal and offshore developments threatens coral reef health by masking natural light:dark cycles that synchronize broadcast spawning. Using a recently published atlas of underwater light pollution, we analyze a global dataset of 2135 spawning observations from the 21st century. For the majority of genera, corals exposed to light pollution are spawning between one and three days closer to the full moon compared to those on unlit reefs. ALAN possibly advances the trigger for spawning by creating a perceived period of minimum illuminance between sunset and moonrise on nights following the full moon. Advancing the timing of mass spawning could decrease the probability of gamete fertilization and survival, with clear implications for ecological processes involved in the resilience of reef systems.


Assuntos
Antozoários , Animais , Poluição Luminosa , Recifes de Corais , Fotoperíodo , Lua , Luz
4.
Biol Lett ; 18(7): 20220110, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35892207

RESUMO

Mounting evidence shows that artificial light at night (ALAN) alters biological processes across levels of organization, from cells to communities. Yet, the combined impacts of ALAN and natural sources of night-time illumination remain little explored. This is in part due the lack of accurate simulations of the complex changes moonlight intensity, timing and spectra throughout a single night and lunar cycles in laboratory experiments. We custom-built a novel system to simulate natural patterns of moonlight to test how different ALAN intensities affect predator-prey relationships over the full lunar cycle. Exposure to high intensity ALAN (10 and 50 lx) reversed the natural lunar-guided foraging pattern by the gastropod mesopredator Nucella lapillus on its prey Semibalanus balanoides. Foraging decreased during brighter moonlight in naturally lit conditions. When exposed to high intensity ALAN, foraging increased with brighter moonlight. Low intensity ALAN (0.1 and 0.5 lx) had no impact on foraging. Our results show that ALAN alters the foraging pattern guided by changes in moonlight brightness. ALAN impacts on ecosystems can depend on lunar light cycles. Accurate simulations of night-time light cycle will warrant more realistic insights into ALAN impacts and also facilitate advances in fundamental night-time ecology and chronobiology.


Assuntos
Ecossistema , Gastrópodes , Animais , Luz , Poluição Luminosa , Iluminação , Fotoperíodo
5.
Sci Rep ; 10(1): 12545, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719492

RESUMO

Accelerating coastal development is increasing the exposure of marine ecosystems to nighttime light pollution, but is anthropogenic light reaching the seafloor in sufficient quantities to have ecological impacts? Using a combination of mapping, and radiative transfer modelling utilising in situ measurements of optical seawater properties, we quantified artificial light exposure at the sea surface, beneath the sea surface, and at the sea floor of an urbanised temperate estuary bordered by an LED lit city. Up to 76% of the three-dimensional seafloor area was exposed to biologically important light pollution. Exposure to green wavelengths was highest, while exposure to red wavelengths was nominal. We conclude that light pollution from coastal cities is likely having deleterious impacts on seafloor ecosystems which provide vital ecosystem services. A comprehensive understanding of these impacts is urgently needed.

6.
Curr Biol ; 30(12): R696-R697, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32574628

RESUMO

Torres et al. demonstrate that artificial skyglow disrupts nightly migrations undertaken by the amphipod Talitrus saltator, which is normally guided by the sky position of the moon.


Assuntos
Anfípodes/efeitos da radiação , Migração Animal , Luz/efeitos adversos , Iluminação/efeitos adversos , Orientação Espacial/efeitos da radiação , Anfípodes/fisiologia , Animais , País de Gales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...