Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Eur J Ophthalmol ; : 11206721231219532, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087768

RESUMO

Myopia is becoming increasingly common in young generations all over the world, and it is predicted to become the most common cause of blindness and visual impairment in later life in the near future. Because myopia can cause serious complications and vision loss, it is critical to create and prescribe effective myopia treatment solutions that can help prevent or delay the onset and progression of myopia. The scientific understanding of myopia's causes, genetic background, environmental conditions, and various management techniques, including therapies to prevent or postpone its development and slow its progression, is rapidly expanding. However, some significant information gaps exist on this subject, making it difficult to develop an effective intervention plan. As with the creation of this present algorithm, a compromise is to work on best practices and reach consensus among a wide number of specialists. The quick rise in information regarding myopia management may be difficult for the busy eye care provider, but it necessitates a continuing need to evaluate new research and implement it into daily practice. To assist eye care providers in developing these strategies, an algorithm has been proposed that covers all aspects of myopia mitigation and management. The algorithm aims to provide practical assistance in choosing and developing an effective myopia management strategy tailored to the individual child. It incorporates the latest research findings and covers a wide range of modalities, from primary, secondary, and tertiary myopia prevention to interventions that reduce the progression of myopia.

2.
Invest Ophthalmol Vis Sci ; 64(15): 41, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153751

RESUMO

Purpose: The purpose of this study was to determine the association between eye shape and volume measured with magnetic resonance imaging (MRI) and optical biometry and with spherical equivalent (SE) in children. Methods: For this study, there were 3637 10-year-old children from a population-based birth-cohort study that underwent optical biometry (IOL-master 500) and T2-weighted MRI scanning (height, width, and volume). Cycloplegic refractive error was determined by automated refraction. The MRI images of the eyes were segmented using an automated algorithm combining atlas registration with voxel classification. Associations among optical biometry, anthropometry, MRI measurements, and RE were tested using Pearson correlation. Differences between refractive error groups were tested using ANOVA. Results: The mean volume of the posterior segment was 6350 (±680) mm3. Myopic eyes (SE ≤ -0.5 diopters [D]) had 470 mm3 (P < 0.001) and 970 mm3 (P < 0.001) larger posterior segment volume than emmetropic and hyperopic eyes (SE ≥ +2.0D), respectively. The majority of eyes (77.1%) had an oblate shape, but 47.4% of myopic eyes had a prolate shape versus 3.9% of hyperopic eyes. The correlation between SE and MRI-derived posterior segment length (r -0.51, P < 0.001) was stronger than the correlation with height (r -0.30, P < 0.001) or width of the eye (r -0.10, P < 0.001). Conclusions: In this study, eye shape at 10 years of age was predominantly oblate, even in eyes with myopia. Of all MRI measurements, posterior segment length was most prominently associated with SE. Whether eye shape predicts future myopia development or progression should be investigated in longitudinal studies.


Assuntos
Hiperopia , Miopia , Erros de Refração , Criança , Humanos , Estudos de Coortes , Olho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Miopia/diagnóstico
3.
Invest Ophthalmol Vis Sci ; 64(14): 38, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010695

RESUMO

Purpose: The purpose of this study was to investigate if education contributes to the risk of myopia because educational activities typically occur indoors or because of other factors, such as prolonged near viewing. Methods: This was a two-sample Mendelian randomization study. Participants were from the UK Biobank, Avon Longitudinal Study of Parents and Children, and Generation R. Genetic variants associated with years spent in education or time spent outdoors were used as instrumental variables. The main outcome measures were: (1) spherical equivalent refractive error attained by adulthood, and (2) risk of an early age-of-onset of spectacle wear (EAOSW), defined as an age-of-onset of 15 years or below. Results: Time spent outdoors was found to have a small genetic component (heritability 9.8%) that tracked from childhood to adulthood. A polygenic score for time outdoors was associated with children's time outdoors; a polygenic score for years spent in education was inversely associated with children's time outdoors. Accounting for the relationship between time spent outdoors and myopia in a multivariable Mendelian randomization analysis reduced the size of the causal effect of more years in education on myopia to -0.17 diopters (D) per additional year of formal education (95% confidence interval [CI] = -0.32 to -0.01) compared with the estimate from a univariable Mendelian randomization analysis of -0.27 D per year (95% CI = -0.41 to -0.13). Comparable results were obtained for the outcome EAOSW. Conclusions: Accounting for the effects of time outdoors reduced the estimated causal effect of education on myopia by 40%. These results suggest about half of the relationship between education and myopia may be mediated by children not being outdoors during schooling.


Assuntos
Atividades de Lazer , Miopia , Adolescente , Criança , Humanos , Adulto Jovem , Escolaridade , Estudos Longitudinais , Miopia/epidemiologia , Miopia/genética , Fatores de Risco , Análise da Randomização Mendeliana
5.
EBioMedicine ; 91: 104551, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37055258

RESUMO

BACKGROUND: High myopia (HM), defined as a spherical equivalent refractive error (SER) ≤ -6.00 diopters (D), is a leading cause of sight impairment, through myopic macular degeneration (MMD). We aimed to derive an improved polygenic score (PGS) for predicting children at risk of HM and to test if a PGS is predictive of MMD after accounting for SER. METHODS: The PGS was derived from genome-wide association studies in participants of UK Biobank, CREAM Consortium, and Genetic Epidemiology Research on Adult Health and Aging. MMD severity was quantified by a deep learning algorithm. Prediction of HM was quantified as the area under the receiver operating curve (AUROC). Prediction of severe MMD was assessed by logistic regression. FINDINGS: In independent samples of European, African, South Asian and East Asian ancestry, the PGS explained 19% (95% confidence interval 17-21%), 2% (1-3%), 8% (7-10%) and 6% (3-9%) of the variation in SER, respectively. The AUROC for HM in these samples was 0.78 (0.75-0.81), 0.58 (0.53-0.64), 0.71 (0.69-0.74) and 0.67 (0.62-0.72), respectively. The PGS was not associated with the risk of MMD after accounting for SER: OR = 1.07 (0.92-1.24). INTERPRETATION: Performance of the PGS approached the level required for clinical utility in Europeans but not in other ancestries. A PGS for refractive error was not predictive of MMD risk once SER was accounted for. FUNDING: Supported by the Welsh Government and Fight for Sight (24WG201).


Assuntos
Degeneração Macular , Miopia , Adulto , Criança , Humanos , Povo Asiático/genética , Etnicidade , Estudo de Associação Genômica Ampla , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Degeneração Macular/epidemiologia , Miopia/diagnóstico , Miopia/genética , População Europeia , População Africana , População do Sul da Ásia , População do Leste Asiático
6.
Ophthalmic Physiol Opt ; 43(3): 494-504, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36882953

RESUMO

PURPOSE: To study the effectiveness of high-dose atropine for reducing eye growth in Mendelian myopia in children and mice. METHODS: We studied the effect of high-dose atropine in children with progressive myopia with and without a monogenetic cause. Children were matched for age and axial length (AL) in their first year of treatment. We considered annual AL progression rate as the outcome and compared rates with percentile charts of an untreated general population. We treated C57BL/6J mice featuring the myopic phenotype of Donnai-Barrow syndrome by selective inactivation of Lrp2 knock out (KO) and control mice (CTRL) daily with 1% atropine in the left eye and saline in the right eye, from postnatal days 30-56. Ocular biometry was measured using spectral-domain optical coherence tomography. Retinal dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured using high-performance liquid chromatography. RESULTS: Children with a Mendelian form of myopia had average baseline spherical equivalent (SE) -7.6 ± 2.5D and AL 25.8 ± 0.3 mm; children with non-Mendelian myopia had average SE -7.3 ± 2.9 D and AL 25.6 ± 0.9 mm. During atropine treatment, the annual AL progression rate was 0.37 ± 0.08 and 0.39 ± 0.05 mm in the Mendelian myopes and non-Mendelian myopes, respectively. Compared with progression rates of untreated general population (0.47 mm/year), atropine reduced AL progression with 27% in Mendelian myopes and 23% in non-Mendelian myopes. Atropine significantly reduced AL growth in both KO and CTRL mice (male, KO: -40 ± 15; CTRL: -42 ± 10; female, KO: -53 ± 15; CTRL: -62 ± 3 µm). The DA and DOPAC levels 2 and 24 h after atropine treatment were slightly, albeit non-significantly, elevated. CONCLUSIONS: High-dose atropine had the same effect on AL in high myopic children with and without a known monogenetic cause. In mice featuring a severe form of Mendelian myopia, atropine reduced AL progression. This suggests that atropine can reduce myopia progression even in the presence of a strong monogenic driver.


Assuntos
Atropina , Miopia Degenerativa , Humanos , Masculino , Feminino , Animais , Camundongos , Ácido 3,4-Di-Hidroxifenilacético , Camundongos Endogâmicos C57BL , Atropina/farmacologia , Refração Ocular , Retina , Progressão da Doença , Soluções Oftálmicas
7.
Ophthalmic Physiol Opt ; 43(3): 402-409, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36772877

RESUMO

PURPOSE: To battle the spreading of the COVID-19 virus, nationwide lockdowns were implemented during 2020 and 2021. Reports from China revealed that their strict home confinements led to an increase in myopia incidence. The Netherlands implemented a more lenient lockdown, which allowed children to go outside. We evaluated the association between COVID-19 restrictions, myopia risk behaviour and myopia progression in Dutch teenagers. METHOD: A total of 1101 participants (mean age 16.3 ± 3.65 yrs) completed questionnaires about their activities before, during and after lockdown (March-October 2020). We used a repeated-measures ANOVA to compare time use between these time periods. Ocular measurements were acquired before the COVID-19 pandemic when participants were 13 years old; only 242 participants had ocular measurements at 18 years of age at the time of this analysis. Linear regression analyses were used to evaluate the association between lifestyle factors and myopia progression. RESULTS: Children were on average 16.2 (1.03) years of age during lockdown. Total nearwork increased from 8.11 h/day to 11.79 h/day, and remained higher after lockdown at 9.46 h/day (p < 0.001). Non-educational nearwork increased by 2.22 h/day (+49%) during lockdown and was associated with faster axial length progression (B 0.002 mm/h/year; SE 0.001 p = 0.03). Before and during lockdown, the mean time spent outdoors was similar (1.78 h/day and 1.80 h/day, respectively). After lockdown, time spent outdoors decreased to 1.56 h/day (p < 0.001). CONCLUSION: The Dutch lockdown significantly increased digitised nearwork in adolescents but did not affect outdoor exposure. The changes in time spent performing nearwork remained after the lockdown measures had ended. We expect that the COVID-19 pandemic may lead to an increase in myopia prevalence and progression in European children.


Assuntos
COVID-19 , Miopia , Criança , Adolescente , Humanos , Adulto Jovem , Adulto , Refração Ocular , Pandemias , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Miopia/epidemiologia , Europa (Continente) , Assunção de Riscos
8.
Optom Vis Sci ; 98(12): 1371-1378, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34759237

RESUMO

SIGNIFICANCE: Our findings show that non-Dutch background, lower maternal education, and lower net household income level may be new risk factors for myopia development in the Netherlands. Newly introduced physical activity spaces may not be effective enough in increasing outdoor exposure in children to reduce eye growth. PURPOSE: The aims of this study were to evaluate socioeconomic inequalities in myopia incidence, eye growth, outdoor exposure, and computer use and to investigate if newly introduced physical activity spaces can reduce eye growth in school-aged children. METHODS: Participants (N = 2643) from the Dutch population-based birth cohort Generation R were examined at ages 6 and 9 years. Socioeconomic inequalities in myopia incidence, eye growth, and lifestyle were determined using regression analyses. Information on physical activity spaces located in Rotterdam was obtained. Differences in eye growth between those who became exposed to new physical activity spaces (n = 230) and those nonexposed (n = 1866) were evaluated with individual-level fixed-effects models. RESULTS: Myopia prevalence was 2.2% at age 6 years and 12.2% at age 9 years. Outdoor exposure was 11.4 h/wk at age 6 years and 7.4 h/wk at age 9 years. Computer use was 2.1 h/wk at age 6 years and 5.2 h/wk at age 9 years. Myopia incidence was higher in children with non-Dutch background, and families with lower household income and lower maternal education (odds ratio [OR], 1.081 [95% confidence interval, 1.052 to 1.112]; OR, 1.035 [95% confidence interval, 1.008 to 1.063]; OR, 1.028 [95% confidence interval, 1.001 to 1.055], respectively). Children living <600 m of a physical activity space did not have increased outdoor exposure, except those from families with lower maternal education (ß = 1.33 h/wk; 95% confidence interval, 0.15 to 2.51 h/wk). Newly introduced physical activity spaces were not associated with reduction of eye growth. CONCLUSIONS: Children from socioeconomically disadvantaged families became more often myopic than those from socioeconomically advantaged families. We did not find evidence that physical activity spaces protect against myopia for the population at large, but subgroups may benefit.


Assuntos
Miopia , Criança , Exercício Físico , Humanos , Miopia/epidemiologia , Miopia/etiologia , Miopia/prevenção & controle , Razão de Chances , Prevalência , Instituições Acadêmicas , Fatores Socioeconômicos
9.
Invest Ophthalmol Vis Sci ; 62(13): 24, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34698770

RESUMO

Purpose: Emmetropization requires coordinated scaling of the major ocular components, corneal curvature and axial length. This coordination is achieved in part through a shared set of genetic variants that regulate eye size. Poorly coordinated scaling of corneal curvature and axial length results in refractive error. We tested the hypothesis that genetic variants regulating eye size in emmetropic eyes are distinct from those conferring susceptibility to refractive error. Methods: A genome-wide association study (GWAS) for corneal curvature in 22,180 adult emmetropic individuals was performed as a proxy for a GWAS for eye size. A polygenic score created using lead GWAS variants was tested for association with corneal curvature and axial length in an independent sample: 437 classified as emmetropic and 637 as ametropic. The genetic correlation between eye size and refractive error was calculated using linkage disequilibrium score regression for approximately 1 million genetic variants. Results: The GWAS for corneal curvature in emmetropes identified 32 independent genetic variants (P < 5.0e-08). A polygenic score created using these 32 genetic markers explained 3.5% (P < 0.001) and 2.0% (P = 0.001) of the variance in corneal curvature and axial length, respectively, in the independent sample of emmetropic individuals but was not predictive of these traits in ametropic individuals. The genetic correlation between eye size and refractive error was close to zero (rg = 0.00; SE = 0.06; P = 0.95). Conclusions: These results support the hypothesis that genetic variants regulating eye size in emmetropic eyes do not overlap with those conferring susceptibility to myopia. This suggests that distinct biological pathways regulate normal eye growth and myopia development.


Assuntos
Comprimento Axial do Olho/diagnóstico por imagem , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Miopia/genética , Polimorfismo de Nucleotídeo Único , Refração Ocular/fisiologia , Adolescente , Adulto , Idoso , Criança , Feminino , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Miopia/diagnóstico , Miopia/fisiopatologia , Adulto Jovem
10.
Invest Ophthalmol Vis Sci ; 62(10): 16, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34406332

RESUMO

Purpose: To study the relatively high effect of the refractive error gene GJD2 in human myopia, and to assess its relationship with refractive error, ocular biometry and lifestyle in various age groups. Methods: The population-based Rotterdam Study (RS), high myopia case-control study MYopia STudy, and the birth-cohort study Generation R were included in this study. Spherical equivalent (SER), axial length (AL), axial length/corneal radius (AL/CR), vitreous depth (VD), and anterior chamber depth (ACD) were measured using standard ophthalmologic procedures. Biometric measurements were compared between GJD2 (rs524952) genotype groups; education and environmental risk score (ERS) were calculated to estimate gene-environment interaction effects, using the Synergy index (SI). Results: RS adults carrying two risk alleles had a lower SER and longer AL, ACD and VD (AA versus TT, 0.23D vs. 0.70D; 23.79 mm vs. 23.52 mm; 2.72 mm vs. 2.65 mm; 16.12 mm vs. 15.87 mm; all P < 0.001). Children carrying two risk alleles had larger AL/CR at ages 6 and 9 years (2.88 vs. 2.87 and 3.00 vs. 2.96; all P < 0.001). Education and ERS both negatively influenced myopia and the biometric outcomes, but gene-environment interactions did not reach statistical significance (SI 1.25 [95% confidence interval {CI}, 0.85-1.85] and 1.17 [95% CI, 0.55-2.50] in adults and children). Conclusions: The elongation of the eye caused by the GJD2 risk genotype follows a dose-response pattern already visible at the age of 6 years. These early effects are an example of how a common myopia gene may drive myopia.


Assuntos
Conexinas/genética , Regulação da Expressão Gênica , Miopia/genética , Vigilância da População , RNA/genética , Refração Ocular , Alelos , Câmara Anterior/diagnóstico por imagem , Comprimento Axial do Olho , Biometria , Estudos de Casos e Controles , Criança , Conexinas/biossíntese , Progressão da Doença , Feminino , Seguimentos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Miopia/diagnóstico , Miopia/fisiopatologia , Estudos Prospectivos , Proteína delta-2 de Junções Comunicantes
11.
Ophthalmology ; 128(12): 1681-1688, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34245754

RESUMO

PURPOSE: To investigate the association between smartphone use and refractive error in teenagers using the Myopia app. DESIGN: Cross-sectional population-based study. PARTICIPANTS: A total of 525 teenagers 12 to 16 years of age from 6 secondary schools and from the birth cohort study Generation R participated. METHODS: A smartphone application (Myopia app; Innovattic) was designed to measure smartphone use and face-to-screen distance objectively and to pose questions about outdoor exposure. Participants underwent cycloplegic refractive error and ocular biometry measurements. Mean daily smartphone use was calculated in hours per day and continuous use as the number of episodes of 20 minutes on screen without breaks. Linear mixed models were conducted with smartphone use, continuous use, and face-to-screen distance as determinants and spherical equivalent of refraction (SER) and axial length-to-corneal radius (AL:CR) ratio as outcome measures stratified by median outdoor exposure. MAIN OUTCOME MEASURES: Spherical equivalent of refraction in diopters and AL:CR ratio. RESULTS: The teenagers on average were 13.7 ± 0.85 years of age, and myopia prevalence was 18.9%. During school days, total smartphone use on average was 3.71 ± 1.70 hours/day and was associated only borderline significantly with AL:CR ratio (ß = 0.008; 95% confidence interval [CI], -0.001 to 0.017) and not with SER. Continuous use on average was 6.42 ± 4.36 episodes of 20-minute use without breaks per day and was associated significantly with SER and AL:CR ratio (ß = -0.07 [95% CI, -0.13 to -0.01] and ß = 0.004 [95% CI, 0.001-0.008], respectively). When stratifying for outdoor exposure, continuous use remained significant only for teenagers with low exposure (ß = -0.10 [95% CI, -0.20 to -0.01] and ß = 0.007 [95% CI, 0.001-0.013] for SER and AL:CR ratio, respectively). Smartphone use during weekends was not associated significantly with SER and AL:CR ratio, nor was face-to-screen distance. CONCLUSIONS: Dutch teenagers spent almost 4 hours per day on their smartphones. Episodes of 20 minutes of continuous use were associated with more myopic refractive errors, particularly in those with low outdoor exposure. This study suggested that frequent breaks should become a recommendation for smartphone use in teenagers. Future large longitudinal studies will allow more detailed information on safe screen use in youth.


Assuntos
Aplicativos Móveis , Miopia/etiologia , Smartphone/estatística & dados numéricos , Adolescente , Comprimento Axial do Olho/patologia , Biometria , Criança , Córnea/patologia , Estudos Transversais , Feminino , Humanos , Masculino , Miopia/fisiopatologia , Países Baixos , Refração Ocular/fisiologia , Erros de Refração/etiologia , Erros de Refração/fisiopatologia , Inquéritos e Questionários , Fatores de Tempo
12.
Invest Ophthalmol Vis Sci ; 62(5): 3, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33909035

RESUMO

Risk factor analysis provides an important basis for developing interventions for any condition. In the case of myopia, evidence for a large number of risk factors has been presented, but they have not been systematically tested for confounding. To be useful for designing preventive interventions, risk factor analysis ideally needs to be carried through to demonstration of a causal connection, with a defined mechanism. Statistical analysis is often complicated by covariation of variables, and demonstration of a causal relationship between a factor and myopia using Mendelian randomization or in a randomized clinical trial should be aimed for. When strict analysis of this kind is applied, associations between various measures of educational pressure and myopia are consistently observed. However, associations between more nearwork and more myopia are generally weak and inconsistent, but have been supported by meta-analysis. Associations between time outdoors and less myopia are stronger and more consistently observed, including by meta-analysis. Measurement of nearwork and time outdoors has traditionally been performed with questionnaires, but is increasingly being pursued with wearable objective devices. A causal link between increased years of education and more myopia has been confirmed by Mendelian randomization, whereas the protective effect of increased time outdoors from the development of myopia has been confirmed in randomized clinical trials. Other proposed risk factors need to be tested to see if they modulate these variables. The evidence linking increased screen time to myopia is weak and inconsistent, although limitations on screen time are increasingly under consideration as interventions to control the epidemic of myopia.


Assuntos
Miopia/epidemiologia , Medição de Risco/métodos , Progressão da Doença , Escolaridade , Saúde Global , Humanos , Prevalência , Fatores de Risco
13.
JAMA Ophthalmol ; 139(6): 601-609, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33830181

RESUMO

IMPORTANCE: Uncertainty currently exists about whether the same genetic variants are associated with susceptibility to low myopia (LM) and high myopia (HM) and to myopia and hyperopia. Addressing this question is fundamental to understanding the genetics of refractive error and has clinical relevance for genotype-based prediction of children at risk for HM and for identification of new therapeutic targets. OBJECTIVE: To assess whether a common set of genetic variants are associated with susceptibility to HM, LM, and hyperopia. DESIGN, SETTING, AND PARTICIPANTS: This genetic association study assessed unrelated UK Biobank participants 40 to 69 years of age of European and Asian ancestry. Participants 40 to 69 years of age living in the United Kingdom were recruited from January 1, 2006, to October 31, 2010. Of the total sample of 502 682 participants, 117 279 (23.3%) underwent an ophthalmic assessment. Data analysis was performed from December 12, 2019, to June 23, 2020. EXPOSURES: Four refractive error groups were defined: HM, -6.00 diopters (D) or less; LM, -3.00 to -1.00 D; hyperopia, +2.00 D or greater; and emmetropia, 0.00 to +1.00 D. Four genome-wide association study (GWAS) analyses were performed in participants of European ancestry: (1) HM vs emmetropia, (2) LM vs emmetropia, (3) hyperopia vs emmetropia, and (4) LM vs hyperopia. Polygenic risk scores were generated from GWAS summary statistics, yielding 4 sets of polygenic risk scores. Performance was assessed in independent replication samples of European and Asian ancestry. MAIN OUTCOMES AND MEASURES: Odds ratios (ORs) of polygenic risk scores in replication samples. RESULTS: A total of 51 841 unrelated individuals of European ancestry and 2165 unrelated individuals of Asian ancestry were assigned to a specific refractive error group and included in our analyses. Polygenic risk scores derived from all 4 GWAS analyses were predictive of all categories of refractive error in both European and Asian replication samples. For example, the polygenic risk score derived from the HM vs emmetropia GWAS was predictive in the European sample of HM vs emmetropia (OR, 1.58; 95% CI, 1.41-1.77; P = 1.54 × 10-15) as well as LM vs emmetropia (OR, 1.15; 95% CI, 1.07-1.23; P = 8.14 × 10-5), hyperopia vs emmetropia (OR, 0.83; 95% CI, 0.77-0.89; P = 4.18 × 10-7), and LM vs hyperopia (OR, 1.45; 95% CI, 1.33-1.59; P = 1.43 × 10-16). CONCLUSIONS AND RELEVANCE: Genetic risk variants were shared across HM, LM, and hyperopia and across European and Asian samples. Individuals with HM inherited a higher number of variants from among the same set of myopia-predisposing alleles and not different risk alleles compared with individuals with LM. These findings suggest that treatment interventions targeting common genetic risk variants associated with refractive error could be effective against both LM and HM.


Assuntos
Hiperopia , Miopia , Erros de Refração , Criança , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Hiperopia/genética , Miopia/genética
14.
Eur J Ophthalmol ; 31(3): 853-883, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33673740

RESUMO

The prevalence of myopia is increasing extensively worldwide. The number of people with myopia in 2020 is predicted to be 2.6 billion globally, which is expected to rise up to 4.9 billion by 2050, unless preventive actions and interventions are taken. The number of individuals with high myopia is also increasing substantially and pathological myopia is predicted to become the most common cause of irreversible vision impairment and blindness worldwide and also in Europe. These prevalence estimates indicate the importance of reducing the burden of myopia by means of myopia control interventions to prevent myopia onset and to slow down myopia progression. Due to the urgency of the situation, the European Society of Ophthalmology decided to publish this update of the current information and guidance on management of myopia. The pathogenesis and genetics of myopia are also summarized and epidemiology, risk factors, preventive and treatment options are discussed in details.


Assuntos
Miopia Degenerativa , Oftalmologia , Procedimentos Ortoceratológicos , Progressão da Doença , Humanos , Miopia Degenerativa/epidemiologia , Miopia Degenerativa/prevenção & controle , Prevalência
15.
Eye (Lond) ; 34(11): 2020-2028, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32958872

RESUMO

BACKGROUND: Atropine is the most powerful treatment for progressive myopia in childhood. This study explores the 3-year effectiveness of atropine in a clinical setting. METHODS: In this prospective clinical effectiveness study, children with progressive myopia ≥ 1D/year or myopia ≤ -2.5D were prescribed atropine 0.5%. Examination, including cycloplegic refraction and axial length (AL), was performed at baseline, and follow-up. Outcome measures were spherical equivalent (SER) and AL; annual progression of SER on treatment was compared with that prior to treatment. Adjustments to the dose were made after 1 year in case of low (AL ≥ 0.3 mm/year) or high response (AL < 0.1 mm/year) of AL. RESULTS: A total of 124 patients were enrolled in the study (median age: 9.5, range: 5-16 years). At baseline, median SER was -5.03D (interquartile range (IQR): 3.08); median AL was 25.14 mm (IQR: 1.30). N = 89 (71.8%) children were persistent to therapy throughout the 3-year follow-up. Median annual progression of SER for these children was -0.25D (IQR: 0.44); of AL 0.11 mm (IQR: 0.18). Of these, N = 32 (36.0%) had insufficient response and were assigned to atropine 1%; N = 26 (29.2%) showed good response and underwent tapering in dose. Rebound of AL progression was not observed. Of the children who ceased therapy, N = 9 were lost to follow-up; N = 9 developed an allergic reaction; and N = 17 (19.1%) stopped due to adverse events. CONCLUSION: In children with or at risk of developing high myopia, a starting dose of atropine 0.5% was associated with decreased progression in European children during a 3-year treatment regimen. Our study supports high-dose atropine as a treatment option for children at risk of developing high myopia in adulthood.


Assuntos
Atropina , Miopia Degenerativa , Adulto , Criança , Progressão da Doença , Seguimentos , Humanos , Soluções Oftálmicas , Estudos Prospectivos , Refração Ocular
16.
Invest Ophthalmol Vis Sci ; 61(4): 49, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32347918

RESUMO

Purpose: To determine the risk between degree of myopia and myopic macular degeneration (MMD), retinal detachment (RD), cataract, open angle glaucoma (OAG), and blindness. Methods: A systematic review and meta-analyses of studies published before June 2019 on myopia complications. Odds ratios (OR) per complication and spherical equivalent (SER) degree (low myopia SER < -0.5 to > -3.00 diopter [D]; moderate myopia SER ≤ -3.00 to > -6.00 D; high myopia SER ≤ -6.00 D) were calculated using fixed and random effects models. Results: Low, moderate, and high myopia were all associated with increased risks of MMD (OR, 13.57, 95% confidence interval [CI], 6.18-29.79; OR, 72.74, 95% CI, 33.18-159.48; OR, 845.08, 95% CI, 230.05-3104.34, respectively); RD (OR, 3.15, 95% CI, 1.92-5.17; OR, 8.74, 95% CI, 7.28-10.50; OR, 12.62, 95% CI, 6.65-23.94, respectively); posterior subcapsular cataract (OR, 1.56, 95% CI, 1.32-1.84; OR, 2.55, 95% CI, 1.98-3.28; OR, 4.55, 95% CI, 2.66-7.75, respectively); nuclear cataract (OR, 1.79, 95% CI, 1.08-2.97; OR, 2.39, 95% CI, 1.03-5.55; OR, 2.87, 95% CI, 1.43-5.73, respectively); and OAG (OR, 1.59, 95% CI, 1.33-1.91; OR, 2.92, 95% CI, 1.89-4.52 for low and moderate/high myopia, respectively). The risk of visual impairment was strongly related to longer axial length, higher myopia degree, and age older than 60 years (OR, 1.71, 95% CI, 1.07-2.74; OR, 5.54, 95% CI, 3.12-9.85; and OR, 87.63, 95% CI, 34.50-222.58 for low, moderate, and high myopia in participants aged >60 years, respectively). Conclusions: Although high myopia carries the highest risk of complications and visual impairment, low and moderate myopia also have considerable risks. These estimates should alert policy makers and health care professionals to make myopia a priority for prevention and treatment.


Assuntos
Catarata/etiologia , Glaucoma de Ângulo Aberto/etiologia , Degeneração Macular/etiologia , Miopia Degenerativa/complicações , Acuidade Visual , Fatores Etários , Catarata/epidemiologia , Catarata/fisiopatologia , Progressão da Doença , Feminino , Glaucoma de Ângulo Aberto/epidemiologia , Glaucoma de Ângulo Aberto/fisiopatologia , Humanos , Degeneração Macular/epidemiologia , Degeneração Macular/fisiopatologia , Masculino , Miopia Degenerativa/diagnóstico , Prevalência , Prognóstico , Medição de Risco
17.
Commun Biol ; 3(1): 133, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193507

RESUMO

Corneal curvature, a highly heritable trait, is a key clinical endophenotype for myopia - a major cause of visual impairment and blindness in the world. Here we present a trans-ethnic meta-analysis of corneal curvature GWAS in 44,042 individuals of Caucasian and Asian with replication in 88,218 UK Biobank data. We identified 47 loci (of which 26 are novel), with population-specific signals as well as shared signals across ethnicities. Some identified variants showed precise scaling in corneal curvature and eye elongation (i.e. axial length) to maintain eyes in emmetropia (i.e. HDAC11/FBLN2 rs2630445, RBP3 rs11204213); others exhibited association with myopia with little pleiotropic effects on eye elongation. Implicated genes are involved in extracellular matrix organization, developmental process for body and eye, connective tissue cartilage and glycosylation protein activities. Our study provides insights into population-specific novel genes for corneal curvature, and their pleiotropic effect in regulating eye size or conferring susceptibility to myopia.


Assuntos
Comprimento Axial do Olho/patologia , Córnea/patologia , Topografia da Córnea , Loci Gênicos , Miopia/genética , Polimorfismo de Nucleotídeo Único , Povo Asiático/genética , Bases de Dados Genéticas , Redes Reguladoras de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Miopia/etnologia , Miopia/patologia , Fenótipo , Refratometria , Medição de Risco , Fatores de Risco , População Branca/genética
18.
Invest Ophthalmol Vis Sci ; 61(2): 41, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32097480

RESUMO

Purpose: To test the hypothesis that emmetropization buffers against genetic and environmental risk factors for myopia by investigating whether risk factor effect sizes vary depending on children's position in the refractive error distribution. Methods: Refractive error was assessed in participants from two birth cohorts: Avon Longitudinal Study of Parents and Children (ALSPAC) (noncycloplegic autorefraction) and Generation R (cycloplegic autorefraction). A genetic risk score for myopia was calculated from genotypes at 146 loci. Time spent reading, time outdoors, and parental myopia were ascertained from parent-completed questionnaires. Risk factors were coded as binary variables (0 = low, 1 = high risk). Associations between refractive error and each risk factor were estimated using either ordinary least squares (OLS) regression or quantile regression. Results: Quantile regression: effects associated with all risk factors (genetic risk, parental myopia, high time spent reading, low time outdoors) were larger for children in the extremes of the refractive error distribution than for emmetropes and low ametropes in the center of the distribution. For example, the effect associated with having a myopic parent for children in quantile 0.05 vs. 0.50 was as follows: ALSPAC: age 15, -1.19 D (95% CI -1.75 to -0.63) vs. -0.13 D (-0.19 to -0.06), P = 0.001; Generation R: age 9, -1.31 D (-1.80 to -0.82) vs. -0.19 D (-0.26 to -0.11), P < 0.001. Effect sizes for OLS regression were intermediate to those for quantiles 0.05 and 0.50. Conclusions: Risk factors for myopia were associated with much larger effects in children in the extremes of the refractive error distribution, providing indirect evidence that emmetropization buffers against both genetic and environmental risk factors.


Assuntos
Emetropia/fisiologia , Interação Gene-Ambiente , Predisposição Genética para Doença , Miopia/etiologia , Erros de Refração/etiologia , Adolescente , Criança , Feminino , Humanos , Estudos Longitudinais , Masculino , Miopia/genética , Erros de Refração/genética , Análise de Regressão , Fatores de Risco
19.
Prev Med ; 132: 105988, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31954142

RESUMO

Environmental factors are important in the development of myopia. There is still limited evidence as to whether computer use is a risk factor. The aim of this study is to investigate the association between computer use and myopia in the context of other near work activities. Within the birth cohort study Generation R, we studied 5074 children born in Rotterdam between 2002 and 2006. Refractive error and axial length was measured at ages 6 and 9. Information on computer use and outdoor exposure was obtained at age 3, 6 and 9 years using a questionnaire, and reading time and reading distance were assessed at age 9 years. Myopia prevalence (spherical equivalent ≤-0.5 dioptre) was 11.5% at 9 years. Mean computer use was associated with myopia at age 9 (OR = 1.005, 95% CI = 1.001-1.009), as was reading time and reading distance (OR = 1.031; 95% CI = 1.007-1.055 (5-10 h/wk); OR = 1.113; 95% CI = 1.073-1.155 (>10 h/wk) and OR = 1.072; 95% CI = 1.048-1.097 respectively). The combined effect of near work (computer use, reading time and reading distance) showed an increased odds ratio for myopia at age 9 (OR = 1.072; 95% CI = 1.047-1.098), while outdoor exposure showed a decreased odds ratio (OR = 0.996; 95% CI = 0.994-0.999) and the interaction term was significant (P = 0.036). From our results, we can conclude that within our sample of children, increased computer use is associated with myopia development. The effect of combined near work was decreased by outdoor exposure. The risks of digital devices on myopia and the protection by outdoor exposure should become widely known. Public campaigns are warranted.


Assuntos
Miopia/epidemiologia , Leitura , Tempo de Tela , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Miopia/etiologia , Países Baixos/epidemiologia , Prevalência , Fatores de Risco , Inquéritos e Questionários , Acuidade Visual/fisiologia
20.
Invest Ophthalmol Vis Sci ; 60(3): M184-M203, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30817832

RESUMO

Best practice clinical guidelines for myopia control involve an understanding of the epidemiology of myopia, risk factors, visual environment interventions, and optical and pharmacologic treatments, as well as skills to translate the risks and benefits of a given myopia control treatment into lay language for both the patient and their parent or caregiver. This report details evidence-based best practice management of the pre-, stable, and the progressing myope, including risk factor identification, examination, selection of treatment strategies, and guidelines for ongoing management. Practitioner considerations such as informed consent, prescribing off-label treatment, and guides for patient and parent communication are detailed. The future research directions of myopia interventions and treatments are discussed, along with the provision of clinical references, resources, and recommendations for continuing professional education in this growing area of clinical practice.


Assuntos
Miopia/prevenção & controle , Guias de Prática Clínica como Assunto , Medicina Baseada em Evidências , Humanos , Consentimento Livre e Esclarecido , Internacionalidade , Uso Off-Label , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...