Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 140: 213083, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36027666

RESUMO

Glycogen-nucleic acid constructs i.e., glycoplexes are emerging promising platforms for the alteration of gene expression and transcription. Understanding the interaction of glycoplexes with human blood components, such as serum proteins and peripheral blood mononuclear cells (PBMCs), is important to overcome immune cell activation and control biodistribution upon administration of the glycoplexes in vivo. Herein, we investigated the interactions of polyethylene glycol (PEG)ylated and non-PEGylated glycoplexes carrying siRNA molecules with PBMCs isolated from the blood of healthy donors. We found that both types of glycoplexes were non-toxic and were primarily phagocytosed by monocytes without triggering a pro-inflammatory interleukin 6 cytokine production. Furthermore, we investigated the role of the protein corona on controlling the internalization efficiency in immune cells - we found that the adsorption of serum proteins, in particular haptoglobin, alpha-1-antitrypsin and apolipoprotein A-II, onto the non-PEGylated glycoplexes, significantly reduced the uptake of the glycoplexes by PBMCs. Moreover, the non-PEGylated glycoplexes were efficient in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) knockdown in monocytic THP-1 cell line. This study provides an insight into the rational design of glycogen-based nanocarriers for the safe delivery of siRNA without eliciting unwanted immune cell activation and efficient siRNA activity upon its delivery.


Assuntos
Coroa de Proteína , Proteínas Sanguíneas/metabolismo , Glicogênio/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Coroa de Proteína/metabolismo , RNA Interferente Pequeno/genética , Distribuição Tecidual
2.
iScience ; 24(6): 102683, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34195564

RESUMO

Mesenchymal stromal cells (MSCs) combined with calcineurin-nuclear factor of activated T cell (CN-NFAT) inhibitors are being tested as a treatment for graft-versus-host disease (GvHD). The immunosuppressive properties of MSCs seem beneficial; however, their response during fungal infection, which is an important cause of mortality in patients with GvHD , is unknown. We report that MSCs phagocytose the fungal component zymosan, resulting in phosphorylation of spleen tyrosine kinase (Syk), increase in cytosolic calcium levels, and ultimately, increase in NFAT1 nuclear translocation. RNA sequencing analysis of zymosan-treated MSCs showed that CN-NFAT inhibition affects extracellular matrix (ECM) genes but not cytokine expression that is under the control of the NF-κB pathway. When coculturing MSCs or decellularized MSC-ECM with human peripheral blood mononuclear cells (PBMCs), selective NFAT inhibition in MSCs decreased cytokine expression by PBMCs. These findings reveal a dual mechanism underlying the MSC response to zymosan: while NF-κB directly controls inflammatory cytokine expression, NFAT impacts immune-cell functions by regulating ECM remodeling.

3.
Shock ; 54(5): 606-614, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32516170

RESUMO

Phagocytosis is a complex process by which cells within most organ systems remove pathogens and cell debris. Phagocytosis is usually followed by inflammatory pathway activation, which promotes pathogen elimination and inhibits pathogen growth. Delayed pathogen elimination is the first step in sepsis development and a key factor in sepsis resolution. Phagocytosis thus has an important role during sepsis and likely contributes to all of its clinical stages. However, only a few studies have specifically explored and characterized phagocytic activity during sepsis. Here, we describe the phagocytic processes that occur as part of the immune response preceding sepsis onset and identify the elements of phagocytosis that might constitute a predictive marker of sepsis outcomes. First, we detail the key features of phagocytosis, including the main receptors and signaling hallmarks associated with different phagocytic processes. We then discuss how the initial events of phagosome formation and cytoskeletal remodeling might be associated with known sepsis features, such as a cytokine-driven hyperinflammatory response and immunosuppression. Finally, we highlight the unresolved mechanisms of sepsis development and progression and the need for cross-disciplinary approaches to link the clinical complexity of the disease with basic cellular and molecular mechanisms.


Assuntos
Citocinas/imunologia , Terapia de Imunossupressão , Fagocitose , Sepse/imunologia , Transdução de Sinais/imunologia , Animais , Humanos , Sepse/patologia
4.
Clin Transl Immunology ; 9(5): e1131, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32377340

RESUMO

OBJECTIVES: The activation of immune responses in mucosal tissues is a key factor for the development and sustainment of several pathologies including infectious diseases and autoimmune diseases. However, translational research and personalised medicine struggle to advance because of the lack of suitable preclinical models that successfully mimic the complexity of human tissues without relying on in vivo mouse models. Here, we propose two in vitro human 3D tissue models, deprived of any resident leucocytes, to model mucosal tissue inflammatory processes. METHODS: We developed human 3D lung and intestinal organoids differentiated from induced pluripotent stem cells to model mucosal tissues. We then compared their response to a panel of microbial ligands and investigated their ability to attract and host human primary monocytes. RESULTS: Mature lung and intestinal organoids comprised epithelial (EpCAM+) and mesenchymal (CD73+) cells which responded to Toll-like receptor stimulation by releasing pro-inflammatory cytokines and expressing tissue inflammatory markers including MMP9, COX2 and CRP. When added to the organoid culture, primary human monocytes migrated towards the organoids and began to differentiate to an 'intermediate-like' phenotype characterised by increased levels of CD14 and CD16. CONCLUSION: We show that human mucosal organoids exhibit proper immune functions and successfully mimic an immunocompetent tissue microenvironment able to host patient-derived immune cells. Our experimental set-up provides a novel tool to tackle the complexity of immune responses in mucosal tissues which can be tailored to different human pathologies.

5.
J Leukoc Biol ; 107(3): 497-508, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30934147

RESUMO

Calcineurin (CN) inhibitors are effective clinical immunosuppressants but leave patients vulnerable to potentially fatal fungal infections. This study tested the hypothesis that CN inhibition interferes with antifungal immune defenses mediated by monocytes. We showed that NFAT is expressed by human monocytes, and is activated by exposure to fungal ligands. We confirmed that NFAT translocation potently activated target gene transcription using a human monocytic reporter cell line. Inhibition of CN-NFAT by cyclosporine A significantly reduced monocyte production of TNF-α, IL-10, and MCP-1 proteins in response to pattern recognition receptor ligands as well as to Aspergillus fumigatus conidia. Moreover, we revealed that human monocytes express the antifungal protein pentraxin-3 under control of NFAT. In conclusion, clinical CN inhibitors have the potential to interfere with the novel NFAT-dependent pentraxin-3 pathway as well as antifungal cytokine production in human monocytes, thereby impeding monocyte-mediated defenses against fungal infection in immune-suppressed patients.


Assuntos
Antifúngicos/metabolismo , Proteína C-Reativa/metabolismo , Inibidores de Calcineurina/farmacologia , Monócitos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Componente Amiloide P Sérico/metabolismo , Animais , Aspergillus fumigatus/efeitos dos fármacos , Sequência de Bases , Sítios de Ligação , Quimiocinas/metabolismo , Ciclosporina/farmacologia , Humanos , Interleucina-10/metabolismo , Camundongos , Monócitos/efeitos dos fármacos , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Transporte Proteico/efeitos dos fármacos , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
6.
Front Genet ; 9: 345, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210531

RESUMO

Telomeropathies are rare disorders associated with impaired telomere length control mechanisms that frequently result from genetic mutations in the telomerase complex. Dyskeratosis congenita is a congenital progressive telomeropathy in which mutation in the telomerase RNA component (TERC) impairs telomere maintenance leading to accelerated cellular senescence and clinical outcomes resembling premature aging. The most severe clinical feature is perturbed hematopoiesis and bone-marrow failure, but the underlying mechanisms are not fully understood. Here, we developed a model of telomerase function imbalance using shRNA to knockdown TERC expression in human induced pluripotent stem cells (iPSCs). We then promoted in vitro hematopoiesis in these cells to analyze the effects of TERC impairment. Reduced TERC expression impaired hematopoietic stem-cell (HSC) differentiation and increased the expression of cellular senescence markers and production of reactive oxygen species. Interestingly, telomere length was unaffected in shTERC knockdown iPSCs, leading to conclusion that the phenotype is controlled by non-telomeric functions of telomerase. We then assessed the effects of TERC-depletion in THP-1 myeloid cells and again observed reduced hematopoietic and myelopoietic differentiative potential. However, these cells exhibited impaired telomerase activity as verified by accelerated telomere shortening. shTERC-depleted iPSC-derived and THP-1-derived myeloid precursors had lower phagocytic capacity and increased ROS production, indicative of senescence. These findings were confirmed using a BIBR1532 TERT inhibitor, suggesting that these phenotypes are dependent on telomerase function but not directly linked to telomere length. These data provide a better understanding of the molecular processes driving the clinical signs of telomeropathies and identify novel roles of the telomerase complex other than regulating telomere length.

7.
EMBO Mol Med ; 9(8): 990-999, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28606994

RESUMO

Myeloid leucocytes mediate host protection against infection and critically regulate inflammatory responses in body tissues. Pattern recognition receptor signalling is crucial for myeloid cell responses to pathogens, but growing evidence suggests an equally potent role for Calcineurin-NFAT signalling in control of myeloid cell function. All major subsets of myeloid leucocytes employ Calcineurin-NFAT signalling during immune responses to pathogens and/or tissue damage, but the influence this pathway exerts on pathogen clearance and host susceptibility to infection is not fully understood. Recent data from experimental models indicate that Calcineurin-NFAT signalling is essential for infection control, and calcineurin inhibitors used in transplantation medicine (including cyclosporine A and tacrolimus) are now being tested for efficacy in a diverse range of inflammatory conditions and autoimmune pathologies. Efforts to repurpose calcineurin inhibitor drugs for new therapeutic applications may yield rapid improvements in clinical outcomes, but the potential impact of these compounds on myeloid cell function in treated patients is largely unknown. Here we discuss Calcineurin-NFAT control of myeloid leucocyte function in the context of recent therapeutic developments and ongoing clinical studies.


Assuntos
Calcineurina/metabolismo , Imunossupressores/uso terapêutico , Leucócitos/imunologia , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...