Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847227

RESUMO

RASopathies are rare developmental genetic syndromes caused by germline pathogenic variants in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) signal transduction pathway. Although the incidence of each RASopathy syndrome is rare, collectively, they represent one of the largest groups of multiple congenital anomaly syndromes and have severe developmental consequences. Here, we review our understanding of how RAS/MAPK dysregulation in RASopathies impacts skeletal muscle development and the importance of RAS/MAPK pathway regulation for embryonic myogenesis. We also discuss the complex interactions of this pathway with other intracellular signaling pathways in the regulation of skeletal muscle development and growth, and the opportunities that RASopathy animal models provide for exploring the use of pathway inhibitors, typically used for cancer treatment, to correct the unique skeletal myopathy caused by the dysregulation of this pathway.


Assuntos
Desenvolvimento Muscular , Músculo Esquelético , Proteínas ras , Humanos , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas ras/metabolismo , Desenvolvimento Muscular/genética , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Animais de Doenças
2.
Dis Model Mech ; 15(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34553752

RESUMO

Costello syndrome (CS) is a congenital disorder caused by heterozygous activating germline HRAS mutations in the canonical Ras/mitogen-activated protein kinase (Ras/MAPK) pathway. CS is one of the RASopathies, a large group of syndromes caused by mutations within various components of the Ras/MAPK pathway. An important part of the phenotype that greatly impacts quality of life is hypotonia. To gain a better understanding of the mechanisms underlying hypotonia in CS, a mouse model with an activating HrasG12V allele was utilized. We identified a skeletal myopathy that was due, in part, to inhibition of embryonic myogenesis and myofiber formation, resulting in a reduction in myofiber size and number that led to reduced muscle mass and strength. In addition to hyperactivation of the Ras/MAPK and PI3K/AKT pathways, there was a significant reduction in p38 signaling, as well as global transcriptional alterations consistent with the myopathic phenotype. Inhibition of Ras/MAPK pathway signaling using a MEK inhibitor rescued the HrasG12V myopathy phenotype both in vitro and in vivo, demonstrating that increased MAPK signaling is the main cause of the muscle phenotype in CS.


Assuntos
Síndrome de Costello , Doenças Musculares , Animais , Síndrome de Costello/genética , Síndrome de Costello/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Qualidade de Vida
3.
Am J Med Genet A ; 185(10): 3048-3052, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34032360

RESUMO

Noonan syndrome (NS) is one of the common RASopathies. While the clinical phenotype in NS is variable, it is typically characterized by distinctive craniofacial features, cardiac defects, reduced growth, bleeding disorders, learning issues, and an increased risk of cancer. Several different genes cause NS, all of which are involved in the Ras/mitogen-activated protein kinase (Ras/MAPK) pathway. Juvenile xanthogranuloma (JXG) is an uncommon, proliferative, self-limited cutaneous disorder that affects young individuals and may be overlooked or misdiagnosed due to its transient nature. A RASopathy that is known to be associated with JXG is neurofibromatosis type 1 (NF1). JXG in NF1 has also been reported in association with a juvenile myelomonocytic leukemia (JMML). As RASopathies, both NS and NF1 have an increased incidence of JMML. We report a 10-month-old female with NS who has a PTPN11 pathogenic variant resulting in a heterozygous SHP2 p.Y62D missense mutation. She was found to have numerous, small, yellow-pink smooth papules that were histopathologically confirmed to be JXG. In understanding the common underlying pathogenetic dysregulation of the Ras/MAPK pathway in both NS and NF1, this report suggests a possible molecular association for why NS individuals may be predisposed to JXG.


Assuntos
Predisposição Genética para Doença , Leucemia Mielomonocítica Juvenil/genética , Síndrome de Noonan/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Xantogranuloma Juvenil/genética , Feminino , Humanos , Lactente , Leucemia Mielomonocítica Juvenil/complicações , Leucemia Mielomonocítica Juvenil/patologia , Mutação de Sentido Incorreto/genética , Neurofibromina 1/genética , Síndrome de Noonan/complicações , Síndrome de Noonan/patologia , Fenótipo , Xantogranuloma Juvenil/complicações , Xantogranuloma Juvenil/patologia , Proteínas ras/genética
4.
Dev Dyn ; 250(8): 1074-1095, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33522658

RESUMO

BACKGROUND: Cardio-facio-cutaneous (CFC) syndrome is a human multiple congenital anomaly syndrome that is caused by activating heterozygous mutations in either BRAF, MEK1, or MEK2, three protein kinases of the Ras/mitogen-activated protein kinase (MAPK) pathway. CFC belongs to a group of syndromes known as RASopathies. Skeletal muscle hypotonia is a ubiquitous phenotype of RASopathies, especially in CFC syndrome. To better understand the underlying mechanisms for the skeletal myopathy in CFC, a mouse model with an activating BrafL597V allele was utilized. RESULTS: The activating BrafL597V allele resulted in phenotypic alterations in skeletal muscle characterized by a reduction in fiber size which leads to a reduction in muscle size which are functionally weaker. MAPK pathway activation caused inhibition of myofiber differentiation during embryonic myogenesis and global transcriptional dysregulation of developmental pathways. Inhibition in differentiation can be rescued by MEK inhibition. CONCLUSIONS: A skeletal myopathy was identified in the CFC BrafL597V mouse validating the use of models to study the effect of Ras/MAPK dysregulation on skeletal myogenesis. RASopathies present a novel opportunity to identify new paradigms of myogenesis and further our understanding of Ras in development. Rescue of the phenotype by inhibitors may help advance the development of therapeutic options for RASopathy patients.


Assuntos
Displasia Ectodérmica/genética , Insuficiência de Crescimento/genética , Cardiopatias Congênitas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Proteínas Proto-Oncogênicas B-raf/genética , Alelos , Animais , Displasia Ectodérmica/metabolismo , Displasia Ectodérmica/patologia , Fácies , Insuficiência de Crescimento/metabolismo , Insuficiência de Crescimento/patologia , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Fenótipo , Proteínas Proto-Oncogênicas B-raf/metabolismo
5.
Am J Med Genet A ; 185(2): 469-475, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33274568

RESUMO

Cardio-facio-cutaneous syndrome (CFC) is one of the RASopathies and is caused by germline mutations that activate the Ras/mitogen-activated protein kinase (MAPK) pathway. CFC is due to heterozygous germline mutations in protein kinases BRAF, MEK1, or MEK2 and rarely in KRAS, a small GTPase. CFC is a multiple congenital anomaly disorder in which individuals may have craniofacial dysmorphia, heart issues, skin and hair anomalies, and delayed development. Pathogenic variants for CFC syndrome are usually considered de novo because vertical transmission has only been reported with MEK2 and KRAS. The index case was a 3-year-old male with features consistent with the clinical diagnosis of CFC. Sequencing revealed a previously reported heterozygous likely pathogenic variant BRAF p.G464R. Upon detailed family history, the index case's pregnant mother was noted to have similar features to her son. Targeted familial testing of the BRAF pathogenic variant was performed on the mother, confirming her diagnosis. Prenatal genetic testing for the fetus was declined, but postnatal molecular testing of the index case's sister was positive for the familial BRAF p.G464R variant. Functional analysis of the variant demonstrated increased kinase activity. We report the first identified vertically transmitted functional BRAF pathogenic variant. Our findings emphasize the importance of obtaining a comprehensive evaluation of family members and that activating pathogenic variants within the canonical MAPK cascade mediated by BRAF are compatible with human reproduction.


Assuntos
Anormalidades Múltiplas/genética , Displasia Ectodérmica/genética , Insuficiência de Crescimento/genética , Predisposição Genética para Doença , Cardiopatias Congênitas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Anormalidades Múltiplas/patologia , Adulto , Pré-Escolar , Displasia Ectodérmica/patologia , Fácies , Insuficiência de Crescimento/patologia , Feminino , Mutação em Linhagem Germinativa/genética , Cardiopatias Congênitas/patologia , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 2/genética , Masculino , Gravidez , Proteínas Proto-Oncogênicas p21(ras)/genética
6.
Curr Genet Med Rep ; 4(3): 57-64, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27942422

RESUMO

The Ras/mitogen activated protein kinase (MAPK) pathway is essential in the regulation of cell cycle, differentiation, growth, cell senescence and apoptosis, all of which are critical to normal development. A class of neurodevelopmental disorders, RASopathies, is caused by germline mutations in genes of the Ras/MAPK pathway. Through the use of whole exome sequencing and targeted sequencing of selected genes in cohorts of panel-negative RASopathy patients, several new genes have been identified. These include: RIT1, SOS2, RASA2, RRAS and SYNGAP1, that likely represent new, albeit rare, causative RASopathy genes. In addition, A2ML1, LZTR1, MYST4, SPRY1 and MAP3K8 may represent new rare genes for RASopathies, but, additional functional studies regarding the mutations are warranted. In addition, recent reports have demonstrated that chromosomal copy number variation in regions encompassing Ras/MAPK pathway genes may be a novel pathogenetic mechanism expanding the RASopathies.

7.
Hum Mol Genet ; 25(R2): R123-R132, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27412009

RESUMO

The RASopathies are defined as a group of medical genetics syndromes that are caused by germ-line mutations in genes that encode components or regulators of the Ras/mitogen-activated protein kinase (MAPK) pathway. Taken together, the RASopathies represent one of the most prevalent groups of malformation syndromes affecting greater than 1 in 1,000 individuals. The Ras/MAPK pathway has been well studied in the context of cancer as it plays essential roles in growth, differentiation, cell cycle, senescence and apoptosis, all of which are also critical to normal development. The consequence of germ-line dysregulation leads to phenotypic alterations of development. RASopathies can be caused by several pathogenetic mechanisms that ultimately impact or alter the normal function and regulation of the MAPK pathway. These pathogenetic mechanisms can include functional alteration of GTPases, Ras GTPase-activating proteins, Ras guanine exchange factors, kinases, scaffolding or adaptor proteins, ubiquitin ligases, phosphatases and pathway inhibitors. Although these mechanisms are diverse, the common underlying biochemical phenotype shared by all the RASopathies is Ras/MAPK pathway activation. This results in the overlapping phenotypic features among these syndromes.

8.
Hum Mol Genet ; 23(3): 682-92, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24057668

RESUMO

RASopathies are syndromes caused by gain-of-function mutations in the Ras signaling pathway. One of these conditions, Costello syndrome (CS), is typically caused by an activating de novo germline mutation in HRAS and is characterized by a wide range of cardiac, musculoskeletal, dermatological and developmental abnormalities. We report that a majority of individuals with CS have hypo-mineralization of enamel, the outer covering of teeth, and that similar defects are present in a CS mouse model. Comprehensive analysis of the mouse model revealed that ameloblasts, the cells that generate enamel, lacked polarity, and the ameloblast progenitor cells were hyperproliferative. Ras signals through two main effector cascades, the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) pathways. To determine through which pathway Ras affects enamel formation, inhibitors targeting either PI3K or MEK 1 and 2 (MEK 1/2), kinases in the MAPK pathway, were utilized. MEK1/2 inhibition rescued the hypo-mineralized enamel, normalized the ameloblast polarity defect and restored normal progenitor cell proliferation. In contrast, PI3K inhibition only corrected the progenitor cell proliferation phenotype. We demonstrate for the first time the central role of Ras signaling in enamel formation in CS individuals and present the mouse incisor as a model system to dissect the roles of the Ras effector pathways in vivo.


Assuntos
Síndrome de Costello/metabolismo , Esmalte Dentário/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adolescente , Adulto , Ameloblastos/metabolismo , Ameloblastos/patologia , Animais , Estudos de Casos e Controles , Polaridade Celular , Criança , Pré-Escolar , Estudos de Coortes , Síndrome de Costello/genética , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/metabolismo , Esmalte Dentário/ultraestrutura , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Lactente , MAP Quinase Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase Quinase 1/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Microscopia Eletrônica de Varredura , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética , Adulto Jovem
9.
Muscle Nerve ; 46(3): 394-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22907230

RESUMO

INTRODUCTION: RASopathies are a group of genetic conditions due to alterations of the Ras/MAPK pathway. Neurocutaneous findings are hallmark features of the RASopathies, but musculoskeletal abnormalities are also frequent. The objective was to evaluate handgrip strength in the RASopathies. METHODS: Individuals with RASopathies (e.g., Noonan syndrome, Costello syndrome, cardio-facio-cutaneous [CFC] syndrome, and neurofibromatosis type 1 [NF1]) and healthy controls were evaluated. Two methods of handgrip strength were tested: GRIP-D Takei Hand Grip Dynamometer and the Martin vigorimeter. A general linear model was fitted to compare average strength among the groups, controlling for confounders such as age, gender, height, and weight. RESULTS: Takei dynamometer: handgrip strength was decreased in each of the syndromes compared with controls. Decreased handgrip strength compared with sibling controls was also seen with the Martin vigorimeter (P < 0.0001). CONCLUSIONS: Handgrip strength is decreased in the RASopathies. The etiology of the reduced muscle force is unknown, but likely multifactorial.


Assuntos
Síndrome de Costello/fisiopatologia , Displasia Ectodérmica/fisiopatologia , Insuficiência de Crescimento/fisiopatologia , Força da Mão/fisiologia , Cardiopatias Congênitas/fisiopatologia , Debilidade Muscular/fisiopatologia , Neurofibromatose 1/fisiopatologia , Síndrome de Noonan/fisiopatologia , Proteínas ras/genética , Adolescente , Adulto , Criança , Pré-Escolar , Síndrome de Costello/genética , Síndrome de Costello/metabolismo , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Fácies , Insuficiência de Crescimento/genética , Insuficiência de Crescimento/metabolismo , Feminino , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Proteínas ras/metabolismo
10.
Am J Med Genet C Semin Med Genet ; 157C(2): 104-14, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21495178

RESUMO

Cardio-facio-cutaneous syndrome (CFC) and Costello syndrome (CS) are two of the more rare RASopathies caused by altered signal transduction of the Ras/mitogen-activated protein kinase (MAPK) pathway. All of the RASopathies exhibit some degree of hypotonia, but CS and CFC are more severe. To determine if individuals with CS and CFC have an underlying skeletal myopathy, we systematically evaluated skeletal muscle pathology in both conditions. We reviewed pathology reports from six individuals who had undergone a skeletal muscle biopsy, and we reviewed histology slides on two cases with CS and one case with CFC. All patients in the cohort had histopathologic findings, and two consistent abnormalities were identified. The first was the presence of abnormal muscle fiber size and variability, and the second was the presence of type 2 fiber predominance. Given the degree of hypotonia typically present in these patients, the overall architecture of the muscle was relatively normal, without showing indications of severe structural histopathology or metabolic abnormalities. Because the Ras/MAPK pathway is vital for skeletal myogenesis, we evaluated the effects of CS and CFC mutations on myogenesis using C2C12 myoblasts. All CS/CFC mutations inhibited myoblast differentiation as indicated by fewer myosin heavy chain expressing cells and a decrease in the number of myotubes as compared to controls. These findings indicate that CS and CFC may have a true myopathy related to an inherent dysregulation of skeletal myogenesis, which further expands our understanding of the consequences of germline Ras/MAPK mutations.


Assuntos
Síndrome de Costello/patologia , Células Germinativas/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/genética , Criança , Pré-Escolar , Estudos de Coortes , Síndrome de Costello/genética , Displasia Ectodérmica/genética , Displasia Ectodérmica/patologia , Fácies , Insuficiência de Crescimento/genética , Insuficiência de Crescimento/patologia , Feminino , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Técnicas Histológicas , Humanos , Lactente , Masculino , Mutação/genética , Plasmídeos/genética
11.
Methods Mol Biol ; 661: 433-47, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20812000

RESUMO

The Ras/mitogen-activated protein kinase (MAPK) pathway is essential in regulation of the cell cycle, cell differentiation, growth, and cell senescence, each of which are critical to normal development. A class of developmental disorders, the "RASopathies," is caused by germline mutations in genes that encode protein components of the Ras/MAPK pathway which result in dysregulation of the pathway and profound deleterious effects on development. One of these syndromes, cardiofaciocutaneous (CFC) syndrome, is caused by germline mutations in BRAF, MAP2K1 (MEK1) and MAP2K2 (MEK2), and possibly KRAS genes. Here, we describe the laboratory protocols and methods that we used to identify mutations in BRAF and MEK1/2 genes as causative for CFC syndrome. In addition, we present the techniques used to determine the effect these mutations have on activity of the Ras/MAPK pathway through Western blot analysis of the phosphorylation of endogenous ERK1/2, as well as through the use of an in vitro kinase assay that measures the phosphorylation of Elk-1.


Assuntos
Análise Mutacional de DNA/métodos , Ensaios Enzimáticos/métodos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Bases , Western Blotting , Clonagem Molecular , DNA/genética , DNA/isolamento & purificação , DNA Complementar/genética , Displasia Ectodérmica/enzimologia , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Fácies , Insuficiência de Crescimento/enzimologia , Insuficiência de Crescimento/genética , Insuficiência de Crescimento/metabolismo , Genoma/genética , Células HEK293 , Cardiopatias Congênitas/enzimologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases , Mutação Puntual , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Síndrome , Transfecção
12.
Am J Med Genet A ; 152A(4): 807-14, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20358587

RESUMO

Cardio-facio-cutaneous (CFC) syndrome is one of the RASopathies and is caused by alteration of activity through the Ras/mitogen-activated protein kinase (MAPK) pathway due to heterozygous de novo mutations in protein kinases BRAF, MEK1, or MEK2. CFC is a rare multiple congenital anomaly disorder in which individuals have characteristic dysmorphic features, cardiac defects, ectodermal anomalies and developmental delay.We report a 7(1/2)-month-old boy with a clinical diagnosis of CFC. Bidirectional sequence analysis of MEK2 revealed a novel c.383C-->A transversion in exon 3 resulting in a nonsynonymous missense substitution, p.P128Q. Other family members, including the proband's mother and half-sibling, displayed phenotypic features of CFC and were also screened for the MEK2 mutation identified in the proband. Sorting Intolerant From Tolerant (SIFT) analysis determined the novel MEK2 p.P128Q to be deleterious. To corroborate the functional alteration of the novel mutant protein, transient transfection of HEK 293T cells with subsequent Western analysis was used to demonstrate increased kinase activity, as measured by ERK phosphorylation. This first reported case of a vertically transmitted functional CFC MEK mutation further expands our understanding of germline mutations within the Ras/MAPK pathway.


Assuntos
Anormalidades Múltiplas/enzimologia , Anormalidades Múltiplas/genética , Fácies , Cardiopatias Congênitas/genética , Padrões de Herança/genética , MAP Quinase Quinase 2/genética , Mutação/genética , Adulto , Sequência de Bases , Linhagem Celular , Pré-Escolar , Análise Mutacional de DNA , Éxons/genética , Características da Família , Feminino , Cardiopatias Congênitas/enzimologia , Humanos , Lactente , Recém-Nascido , Masculino , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Linhagem , Gravidez , Síndrome
13.
Curr Opin Genet Dev ; 19(3): 230-6, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19467855

RESUMO

The Ras/mitogen activated protein kinase (MAPK) pathway is essential in the regulation of the cell cycle, differentiation, growth and cell senescence, all of which are critical to normal development. It is therefore not surprising that its dysregulation has profound effects on development. A class of developmental syndromes, the 'RASopathies', is caused by germline mutations in genes that encode protein components of the Ras/MAPK pathway. The vast majority of these mutations result in increased signal transduction down the Ras/MAPK pathway, but usually to a lesser extent than somatic mutations associated with oncogenesis. Each syndrome exhibits unique phenotypic features, however, since they all cause dysregulation of the Ras/MAPK pathway, there are numerous overlapping phenotypic features between the syndromes, including characteristic facial features, cardiac defects, cutaneous abnormalities, neurocognitive delay and a predisposition to malignancies. Here we review the clinical and underlying molecular basis for each of these syndromes.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais/fisiologia , Proteínas ras/metabolismo , Animais , Mutação em Linhagem Germinativa , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Modelos Biológicos , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Síndrome de Noonan/fisiopatologia , Proteína SOS1/genética , Proteína SOS1/metabolismo , Transdução de Sinais/genética , Síndrome , Proteínas ras/genética
14.
Expert Rev Mol Med ; 10: e37, 2008 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19063751

RESUMO

A class of developmental disorders caused by dysregulation of the Ras-induced mitogen-activated protein kinase (MAPK) cascade (the Ras-MAPK pathway) has emerged. Three of these disorders - Noonan, Costello and cardio-facio-cutaneous syndromes - have overlapping phenotypic features characterised by distinctive facial dysmorphia, cardiac defects, musculoskeletal and cutaneous abnormalities, and neurocognitive delay. The germline mutations associated with these disorders are in genes that encode proteins of the Ras-MAPK pathway. In vitro studies have determined that the overwhelming majority of these mutations result in increased signal transduction down the pathway, but usually to a lesser degree than somatic mutations in the same genes that are associated with cancer. The Ras-MAPK pathway is essential in the regulation of the cell cycle, differentiation, growth and senescence, so it is not surprising that germline mutations that affect its function have profound effects on development. Here we review the clinical consequences of the known molecular lesions associated with Noonan syndrome, Costello syndrome and cardio-facio-cutaneous syndrome, and explore possible therapeutic modalities for treatment.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Genes ras , Cardiopatias Congênitas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Síndrome de Noonan/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Animais , Anormalidades Craniofaciais/metabolismo , Cardiopatias Congênitas/metabolismo , Humanos , Síndrome LEOPARD/genética , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Síndrome de Noonan/metabolismo , Síndrome de Noonan/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína SOS1/genética , Proteína SOS1/metabolismo , Síndrome , Proteínas ras/genética , Proteínas ras/metabolismo
15.
Science ; 311(5765): 1287-90, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16439621

RESUMO

Cardio-facio-cutaneous (CFC) syndrome is a sporadic developmental disorder involving characteristic craniofacial features, cardiac defects, ectodermal abnormalities, and developmental delay. We demonstrate that heterogeneous de novo missense mutations in three genes within the mitogen-activated protein kinase (MAPK) pathway cause CFC syndrome. The majority of cases (18 out of 23) are caused by mutations in BRAF, a gene frequently mutated in cancer. Of the 11 mutations identified, two result in amino acid substitutions that occur in tumors, but most are unique and suggest previously unknown mechanisms of B-Raf activation. Furthermore, three of five individuals without BRAF mutations had missense mutations in either MEK1 or MEK2, downstream effectors of B-Raf. Our findings highlight the involvement of the MAPK pathway in human development and will provide a molecular diagnosis of CFC syndrome.


Assuntos
Anormalidades Múltiplas/genética , Mutação em Linhagem Germinativa , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Adolescente , Adulto , Substituição de Aminoácidos , Criança , Pré-Escolar , Anormalidades Craniofaciais/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Transtornos do Crescimento/genética , Cardiopatias Congênitas/genética , Humanos , Lactente , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 2/genética , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação de Sentido Incorreto , Fosforilação , Proteínas Proto-Oncogênicas B-raf/genética , Anormalidades da Pele/genética , Síndrome , Transfecção
16.
Am J Med Genet A ; 140(1): 8-16, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16372351

RESUMO

Costello syndrome (CS) is a complex developmental disorder involving characteristic craniofacial features, failure to thrive, developmental delay, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Based on similarities with other cancer syndromes, we previously hypothesized that CS is likely due to activation of signal transduction through the Ras/MAPK pathway [Tartaglia et al., 2003]. In this study, the HRAS coding region was sequenced for mutations in a large, well-characterized cohort of 36 CS patients. Heterogeneous missense point mutations predicting an amino acid substitution were identified in 33/36 (92%) patients. The majority (91%) had a 34G --> A transition in codon 12. Less frequent mutations included 35G --> C (codon 12) and 37G --> T (codon 13). Parental samples did not have an HRAS mutation supporting the hypothesis of de novo heterogeneous mutations. There is phenotypic variability among patients with a 34G --> A transition. The most consistent features included characteristic facies and skin, failure to thrive, developmental delay, musculoskeletal abnormalities, visual impairment, cardiac abnormalities, and generalized hyperpigmentation. The two patients with 35G --> C had cardiac arrhythmias whereas one patient with a 37G --> T transversion had an enlarged aortic root. Of the patients with a clinical diagnosis of CS, neoplasia was the most consistent phenotypic feature for predicating an HRAS mutation. To gain an understanding of the relationship between constitutional HRAS mutations and malignancy, HRAS was sequenced in an advanced biphasic rhabdomyosarcoma/fibrosarcoma from an individual with a 34G --> A mutation. Loss of the wild-type HRAS allele was observed, suggesting tumorigenesis in CS patients is accompanied by additional somatic changes affecting HRAS. Finally, due to phenotypic overlap between CS and cardio-facio-cutaneous (CFC) syndromes, the HRAS coding region was sequenced in a well-characterized CFC cohort. No mutations were found which support a distinct genetic etiology between CS and CFC syndromes.


Assuntos
Anormalidades Múltiplas/genética , Genes ras/genética , Mutação , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Alelos , Sequência de Bases , Anormalidades Cardiovasculares/patologia , Criança , Pré-Escolar , Códon/genética , Estudos de Coortes , Análise Mutacional de DNA , Face/anormalidades , Predisposição Genética para Doença/genética , Genótipo , Humanos , Lactente , Deficiência Intelectual/patologia , Anormalidades Musculoesqueléticas/patologia , Neoplasias/genética , Fenótipo , Anormalidades da Pele/patologia , Síndrome
17.
Am J Med Genet A ; 138(4): 349-54, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16200635

RESUMO

Interstitial deletions of chromosome 12q are rare, with only 11 reported cases in the literature. We recently described two cases with cytogenetically identical interstitial deletions of the long arm of chromosome 12. Here, we report on a third patient, a 26-month-old male with a cytogenetically-identical interstitial deletion: 46,XY,del(12)(q21.2q22). Phenotypic features of this male proband included craniofacial and ectodermal anomalies, genitourinary anomalies, minor cardiac abnormalities, mild ventriculomegaly on brain MRI, hyperopia, and developmental delay. To further define the extent of the chromosomal aberration, microarray-based comparative genomic hybridization (array CGH) analysis was performed and the array data was compared to one of our previously reported cases. Although cytogenetic analysis of the two patients was concordant, molecular analysis by array CGH revealed that the patients had discordant distal breakpoints. The determination of molecular breakpoints and phenotypic analyses in these two patients, in conjunction with previously reported cases, leads us to propose a 12q deletion phenotype and a possible genetic locus for hyperkeratosis pilaris/ulerythema ophryogenes.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 12 , Hibridização de Ácido Nucleico , Pré-Escolar , Genótipo , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
18.
Dev Dyn ; 229(3): 591-9, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14991714

RESUMO

The timing of myogenic differentiation of hypaxial muscle precursor cells in the somite lags behind that of epaxial precursors. Two hypotheses have been proposed to explain this delay. One attributes the delay to the presence of negative-acting signals from the lateral plate mesoderm adjacent to the hypaxial muscle precursor cells located in the ventrolateral lip of the somitic dermomyotome (Pourquié et al. [1995] Proc. Natl. Acad. Sci. USA 92:3219-3223). The second attributes the delay to an absence of positive-acting inductive signals, similar to those from the axial structures that induce epaxial myotome development (Pownall et al. [1996] Development 122:1475-1488). Because both studies relied principally upon changes in the expression pattern of mRNAs specific to early muscle precursor cell markers, we revisited these experiments using two methods to assess muscle terminal differentiation. First, injection of fluorescent dyes before surgery was used to determine whether ventrolateral lip cells transform from epithelial cells to elongated myocytes. Second, an antibody to a terminal differentiation marker and a new monoclonal antibody that recognises avian and mammalian Pax3 were used for immunohistochemistry to assess the transition from precursor cell to myocyte. The results support both hypotheses and show further that placing axial structures adjacent to the somite ventrolateral lip induces an axial pattern of myocyte terminal differentiation and elongation.


Assuntos
Extremidades/embriologia , Músculos/embriologia , Animais , Diferenciação Celular , Movimento Celular , Embrião de Galinha , Coturnix , Proteínas de Ligação a DNA/metabolismo , Corantes Fluorescentes/farmacologia , Imuno-Histoquímica , Hibridização In Situ , Microscopia de Fluorescência , Modelos Biológicos , Músculos/citologia , Proteína MyoD/metabolismo , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/metabolismo
19.
Biochemistry ; 43(1): 217-23, 2004 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-14705948

RESUMO

The enzymatic transfer of ADP-ribose from NAD to histone H(1) [defined as trans(oligo-ADP-ribosylation)] or to PARP-1 [defined as auto(poly-ADP-ribosylation)] requires binding of coenzymic DNA. The preceding paper [Kun, E., et al. (2004) Biochemistry 43, 210-216] shows that oligonucleotides of dsDNA can serve as coenzymic DNA for PARP-1 trans- or auto-modification activity. Results of DNA-protein binding (EMSA) experiments reported here demonstrate that short DNA oligonucleotides containing the 5'-TGTTG-3' nucleotide sequence motif preferentially bind to cloned PARP-1 in vitro. The same nucleotide sequence motif is responsible for striated myocyte-selective transcription of a contractile protein gene encoding cardiac troponin T (cTnT). Results of experiments reported here demonstrate that mutation of this motif also abolishes the differentiation-dependent activation of the transfected cTnT promoter in myoblasts cultured in vitro, indicating that nucleotide sequence-dependent binding of PARP-1 to promoter DNA of the cTnT gene is also necessary for differentiation-dependent activation. Thus, PARP-1 has two types of dsDNA binding activity: (1) nucleotide sequence-dependent binding, analyzed here with EMSA experiments, and (2) coenzymic binding, measured catalytically, which does not depend on the nucleotide sequence of the dsDNA. We hypothesize that the well-known association of PARP-1 with chromatin can be attributed to its stable binding to chromosomal dsDNA, some portion of which is likely to be nucleotide sequence-dependent binding. According to this hypothesis, the distribution of this protein-modifying enzyme in chromatin may be targeted to specific genomic loci and vary according to cell type and developmental stage.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Sequência de Bases/fisiologia , Ligação Competitiva , Diferenciação Celular , Linhagem Celular Tumoral , Galinhas , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Elementos Facilitadores Genéticos , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Codorniz , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/química , Transfecção , Troponina T/química , Troponina T/genética
20.
Dev Dyn ; 227(4): 484-96, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12889057

RESUMO

The chicken cardiac troponin T (cTnT) gene is representative of numerous cardiac and skeletal muscle-specific genes that contain muscle-CAT (MCAT) elements within their promoters. We examined the regulation of the chicken cTnT gene in vivo in zebrafish embryos, and in vitro in cardiomyocyte, myoblast, and fibroblast cultures. Defined regions of the cTnT promoter were linked to the green fluorescent protein (GFP) gene for in vivo analysis, and the luciferase gene for in vitro analysis. Injection of the cTnT promoter constructs into fertilized zebrafish eggs resulted in GFP expression in both heart and skeletal muscle cells reproducing the pattern of expression of the endogenous cTnT gene in the chicken embryo. Promoter deletion analysis revealed that the cis-regulatory regions responsible for cardiac and skeletal muscle-specific expression functioned in an equivalent manner in both in vitro and in vivo environments. In addition, we show that mutation of the poly-ADP ribose polymerase-I (PARP-I) binding site adjacent to the distal MCAT element in the chicken cTnT promoter produced a non-cell-specific promoter in vitro and in the zebrafish. Thus, the PARP-I transcriptional regulatory mechanism that governs muscle specificity of the chicken cTnT promoter is conserved across several chordate classes spanning at least 350 million years of evolution.


Assuntos
Galinhas/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Troponina T/genética , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Sítios de Ligação/genética , Células Cultivadas , Embrião de Galinha , Elementos Facilitadores Genéticos/genética , Componentes do Gene , Proteínas de Fluorescência Verde , Hibridização In Situ , Luciferases , Proteínas Luminescentes , Microinjeções , Músculos/embriologia , Mutação/genética , Plasmídeos , Regiões Promotoras Genéticas/genética , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...