Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 273: 118600, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561000

RESUMO

A simple method was provided to prepare a transparent, highly conductive, mechanically reinforced, stretchable, and compressible hydrogel. In this system, pyrrole (Py) monomers were gently polymerized and uniformly deposited on the surface of cellulose nanofiber (CNF) via the improved in-situ polymerization. In the opaque PPy@CNF suspension, acrylamide monomers (AM) were dissolved and radical-polymerized to construct the PPy@CNF-PAM hydrogel with the in-situ formation of PPy nanofibrils in the presence of excess ammonium persulfate (APS). The in-situ formed PPy nanofibrils were well intertwined with the CNF and PAM chains, and a highly conductive path was established and permitted visible light to pass through. The amphipathic CNF took along and dispersed PPy aggregates well, and reinforced the hydrogel after formation of PPy nanofibrils. In view of the improved mechanical compressive, stretchable properties and excellent electrical conductivity (4.5 S/m), the resulting hydrogels could serve as a potential electrical device in a range of applications.

2.
Soft Matter ; 15(37): 7404-7411, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31465077

RESUMO

Herein, a PVA (polyvinyl alcohol)-based multi-responsive hydrogel was prepared by introducing the dynamic and reversible supramolecular complexation between polyvinyl alcohol acetoacetate (PVAA) and Fe3+ ions within 20 s at room temperature. PVAA-Fe hydrogels could be achieved by the simple mixing process of a PVAA aqueous solution with FeCl3 aqueous solution. The soluble PVAA was synthesized by the reaction of PVA with tert-butyl acetoacetate (t-BAA) via transesterification in dimethyl sulfoxide (DMSO). The chemical structure of PVAA was systematically characterized by FT-IR and 1H NMR spectroscopy. The resulting hydrogel showed excellent self-healing behavior without other external stimuli. It was also demonstrated that the PVAA-Fe hydrogel exhibited multi-responsive properties, such as responsiveness to pH, redox, light irradiation and temperature. In addition, the presence of Fe3+ ions and Cl- ions in the gel imparted the PVAA-Fe hydrogel with favorable conductivity. Therefore, the strategy for the facile preparation of the hydrogel in this work could provide a benign and versatile method for achieving multi-functional soft materials for various applications such as smart devices, logic gates, and sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...