Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 54: 137-145, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30337003

RESUMO

PURPOSE: To investigate the effectiveness of an EPID-based 3D transit dosimetry system in detecting deliberately introduced errors during VMAT delivery. METHODS: An Alderson phantom was irradiated using four VMAT treatment plans (one prostate, two head-and-neck and one lung case) in which delivery, thickness and setup errors were introduced. EPID measurements were performed to reconstruct 3D dose distributions of "error" plans, which were compared with "no-error" plans using the mean gamma (γmean), near-maximum gamma (γ1%) and the difference in isocenter dose (ΔDisoc) as metrics. RESULTS: Out of a total of 42 serious errors, the number of errors detected was 33 (79%), and 27 out of 30 (90%) if setup errors are not included. The system was able to pick up errors of 5 mm movement of a leaf bank, a wrong collimator rotation angle and a wrong photon beam energy. A change in phantom thickness of 1 cm was detected for all cases, while only for the head-and-neck plans a 2 cm horizontal and vertical shift of the phantom were alerted. A single leaf error of 5 mm could be detected for the lung plan only. CONCLUSION: Although performed for a limited number of cases and error types, this study shows that EPID-based 3D transit dosimetry is able to detect a number of serious errors in dose delivery, leaf bank position and patient thickness during VMAT delivery. Errors in patient setup and single leaf position can only be detected in specific cases.


Assuntos
Equipamentos e Provisões Elétricas , Erros Médicos , Radiometria/instrumentação , Radioterapia de Intensidade Modulada , Humanos , Neoplasias/radioterapia , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
2.
Med Phys ; 37(6): 2638-44, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20632575

RESUMO

The potential for detrimental incidents and the ever increasing complexity of patient treatments emphasize the need for accurate dosimetric verification in radiotherapy. For this reason, all curative treatments are verified, either pretreatment or in vivo, by electronic portal imaging device (EPID) dosimetry in the Radiation Oncology Department of The Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands. Since the clinical introduction of the method in January 2005 until August 2009, treatment plans of 4337 patients have been verified. Among these plans, 17 serious errors were detected that led to intervention. Due to their origin, nine of these errors would not have been detected with pretreatment verification. The method is illustrated in detail by the case of a plan transfer error detected in a 5 x 5 Gy intensity-modulated radiotherapy (IMRT) rectum treatment. The EPID reconstructed dose at the isocenter was 6.3% below the planned value. Investigation of the plan transfer chain revealed that due to a network transfer error, the plan was corrupted. 3D analysis of the acquired EPID data revealed serious underdosage of the planning target volume: On average 11.6%, locally up to 20%. This report shows the importance of in vivo (EPID) dosimetry for all treatment plans as well as the ability of the method to assess the dosimetric impact of deviations found.


Assuntos
Algoritmos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Tomografia Computadorizada por Raios X/métodos , Ecrans Intensificadores para Raios X , Humanos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Med Phys ; 31(11): 2989-95, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15587651

RESUMO

This study was carried out to determine the stability of the response of amorphous silicon (a-Si)-flat panel imagers for dosimetry applications. Measurements of the imager's response under reference conditions were performed on a regular basis for four detectors of the same manufacturer. We found that the ambient temperature influenced the dark-field, while the gain of the imager signal was unaffected. Therefore, temperature fluctuations were corrected for by applying a "dynamic" darkfield correction. This correction method also removed the influence of a small, irreversible increase of the dark-field current, which was equal to 0.5% of the dynamic range of the imager per year and was probably caused by mild radiation damage to the a-Si array. By applying a dynamic dark-field correction, excellent stability of the response over the entire panel of all imagers of 0.5% (1 SD) was obtained over an observation period up to 23 months. However, two imagers had to be replaced after several months. For one imager, an image segment stopped functioning, while the image quality of the other imager degraded significantly. We conclude that the tested a-Si EPIDs have a very stable response and are therefore well suited for dosimetry. We recommend, however, applying quality assurance tests dedicated to both imaging and dosimetry.


Assuntos
Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Silício/efeitos da radiação , Calibragem , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Garantia da Qualidade dos Cuidados de Saúde/métodos , Garantia da Qualidade dos Cuidados de Saúde/normas , Radiometria/normas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Temperatura
4.
Med Phys ; 31(4): 819-27, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15124999

RESUMO

This study was performed to determine the stability of liquid-filled matrix ionization chamber (LiFi-type) electronic portal imaging devices (EPID) for dosimetric purposes. The short- and long-term stability of the response was investigated, as well as the importance of factors influencing the response (e.g., temperature fluctuations, radiation damage, and the performance of the electronic hardware). It was shown that testing the performance of the electronic hardware as well as the short-term stability of the imagers may reveal the cause of a poor long-term stability of the imager response. In addition, the short-term stability was measured to verify the validity of the fitted dose-response curve immediately after beam startup. The long-term stability of these imagers could be considerably improved by correcting for room temperature fluctuations and gradual changes in response due to radiation damage. As a result, the reproducibility was better than 1% (1 SD) over a period of two years. The results of this study were used to formulate recommendations for a quality control program for portal dosimetry. The effect of such a program was assessed by comparing the results of portal dosimetry and in vivo dosimetry using diodes during the treatment of 31 prostate patients. The improvement of the results for portal dosimetry was consistent with the deviations observed with the reproducibility tests in that particular period. After a correction for the variation in response of the imager, the average difference between the measured and prescribed dose during the treatment of prostate patients was -0.7%+/-1.5% (1 SD), and -0.6%+/-1.1% (1 SD) for EPID and diode in vivo dosimetry, respectively. It can be concluded that a high stability of the response can be achieved for this type of EPID by applying a rigorous quality control program.


Assuntos
Eletrônica Médica/instrumentação , Análise de Falha de Equipamento/métodos , Garantia da Qualidade dos Cuidados de Saúde/métodos , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia/instrumentação , Fluoretos/efeitos da radiação , Compostos de Lítio/efeitos da radiação , Doses de Radiação , Radiometria/métodos , Radioterapia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...