Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 29(11): 1580-1593.e7, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36332571

RESUMO

Accumulating evidence demonstrates important roles for metabolism in cell fate determination. However, it is a challenge to assess metabolism at a spatial resolution that acknowledges both heterogeneity and cellular dynamics in its tissue microenvironment. Using a multi-omics platform to study cell-type-specific dynamics in metabolism in complex tissues, we describe the metabolic trajectories during nephrogenesis in the developing human kidney. Exploiting in situ analysis of isotopic labeling, a shift from glycolysis toward fatty acid ß-oxidation was observed during the differentiation from the renal vesicle toward the S-shaped body and the proximal tubules. In addition, we show that hiPSC-derived kidney organoids are characterized by a metabolic immature phenotype that fails to use mitochondrial long-chain fatty acids for energy metabolism. Furthermore, supplementation of butyrate enhances tubular epithelial differentiation and maturation in cultured kidney organoids. Our findings highlight the relevance of understanding metabolic trajectories to efficiently guide stem cell differentiation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Metabolismo Energético , Metabolômica , Rim/metabolismo
2.
Stem Cells Transl Med ; 9(7): 758-772, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32163224

RESUMO

Differentiation of human-induced pluripotent stem cells (hiPSCs) into vascular endothelium is of great importance to tissue engineering, disease modeling, and use in regenerative medicine. Although differentiation of hiPSCs into endothelial-like cells (hiPSC-derived endothelial cells [hiPSC-ECs]) has been demonstrated before, controversy exists as to what extent these cells faithfully reflect mature endothelium. To address this issue, we investigate hiPSC-ECs maturation by their ability to express von Willebrand factor (VWF) and formation of Weibel-Palade bodies (WPBs). Using multiple hiPSCs lines, hiPSC-ECs failed to form proper VWF and WPBs, essential for angiogenesis, primary and secondary homeostasis. Lowering the increased intracellular pH (pHi) of hiPSC-ECs with acetic acid did result in the formation of elongated WPBs. Nuclear magnetic resonance data showed that the higher pHi in hiPSC-ECs occurred in association with decreased intracellular lactate concentrations. This was explained by decreased glycolytic flux toward pyruvate and lactate in hiPSC-ECs. In addition, decreased expression of monocarboxylate transporter member 1, a member of the solute carrier family (SLC16A1), which regulates lactate and H+ uptake, contributed to the high pHi of hiPSC-EC. Mechanistically, pro-VWF dimers require the lower pH environment of the trans-Golgi network for maturation and tubulation. These data show that while hiPSC-ECs may share many features with mature EC, they are characterized by metabolic immaturity hampering proper EC function.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Corpos de Weibel-Palade/metabolismo , Diferenciação Celular , Humanos , Transfecção
3.
Am J Pathol ; 190(4): 781-790, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035886

RESUMO

The endothelial glycocalyx is critically involved in vascular integrity and homeostasis, by regulating vascular permeability, regulating mechanotransduction, and reducing inflammation and coagulation. The turnover of the glycocalyx is dynamic to fine-tune these processes. This is in particular true for its main structural component, hyaluronan (HA). Degradation and shedding of the glycocalyx by enzymes, such as hyaluronidase 1 and hyaluronidase 2, are responsible for regulation of the glycocalyx thickness and hence access of circulating cells and factors to the endothelial cell membrane and its receptors. This degradation process will at the same time also allow for resynthesis and adaptive chemical modification of the glycocalyx. The (re)synthesis of HA is dependent on the availability of its sugar substrates, thus linking glycocalyx biology directly to cellular glucose metabolism. It is therefore of particular interest to consider the consequences of dysregulated cellular glucose in diabetes for glycocalyx biology and its implications for endothelial function. This review summarizes the metabolic regulation of endothelial glycocalyx HA and its potential as a therapeutic target in diabetic vascular complications.


Assuntos
Complicações do Diabetes/patologia , Endotélio Vascular/patologia , Glicocálix/patologia , Ácido Hialurônico/metabolismo , Animais , Complicações do Diabetes/metabolismo , Complicações do Diabetes/prevenção & controle , Endotélio Vascular/metabolismo , Glicocálix/metabolismo , Humanos
4.
Arterioscler Thromb Vasc Biol ; 40(2): 350-364, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826652

RESUMO

OBJECTIVE: Endothelial cells exposed to laminar shear stress express a thick glycocalyx on their surface that plays an important role in reducing vascular permeability and endothelial anti-inflammatory, antithrombotic, and antiangiogenic properties. Production and maintenance of this glycocalyx layer is dependent on cellular carbohydrate synthesis, but its regulation is still unknown. Approach and Results: Here, we show that biosynthesis of the major structural component of the endothelial glycocalyx, hyaluronan, is regulated by shear. Both in vitro as well as in in vivo, hyaluronan expression on the endothelial surface is increased on laminar shear and reduced when exposed to oscillatory flow, which is regulated by KLF2 (Krüppel-like Factor 2). Using a CRISPR-CAS9 edited small tetracysteine tag to endogenous HAS2 (hyaluronan synthase 2), we demonstrated increased translocation of HAS2 to the endothelial cell membrane during laminar shear. Hyaluronan production by HAS2 was shown to be further driven by availability of the hyaluronan substrates UDP-glucosamine and UDP-glucuronic acid. KLF2 inhibits endothelial glycolysis and allows for glucose intermediates to shuttle into the hexosamine- and glucuronic acid biosynthesis pathways, as measured using nuclear magnetic resonance analysis in combination with 13C-labeled glucose. CONCLUSIONS: These data demonstrate how endothelial glycocalyx function and functional adaptation to shear is coupled to KLF2-mediated regulation of endothelial glycolysis.


Assuntos
Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Glicocálix/metabolismo , Glicólise/fisiologia , Hialuronan Sintases/genética , Fatores de Transcrição Kruppel-Like/genética , Estresse Mecânico , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/patologia , Glicocálix/patologia , Hialuronan Sintases/biossíntese , Fatores de Transcrição Kruppel-Like/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA/genética
5.
Stem Cell Reports ; 13(5): 803-816, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31680061

RESUMO

Human induced pluripotent stem cells (hiPSCs) are used to study organogenesis and model disease as well as being developed for regenerative medicine. Endothelial cells are among the many cell types differentiated from hiPSCs, but their maturation and stabilization fall short of that in adult endothelium. We examined whether shear stress alone or in combination with pericyte co-culture would induce flow alignment and maturation of hiPSC-derived endothelial cells (hiPSC-ECs) but found no effects comparable with those in primary microvascular ECs. In addition, hiPSC-ECs lacked a luminal glycocalyx, critical for vasculature homeostasis, shear stress sensing, and signaling. We noted, however, that hiPSC-ECs have dysfunctional mitochondrial permeability transition pores, resulting in reduced mitochondrial function and increased reactive oxygen species. Closure of these pores by cyclosporine A improved EC mitochondrial function but also restored the glycocalyx such that alignment to flow took place. These results indicated that mitochondrial maturation is required for proper hiPSC-EC functionality.


Assuntos
Células Endoteliais/citologia , Glicocálix/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Diferenciação Celular , Linhagem Celular , Células Endoteliais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/ultraestrutura , Poro de Transição de Permeabilidade Mitocondrial , Espécies Reativas de Oxigênio/metabolismo
6.
Child Adolesc Psychiatr Clin N Am ; 26(2): 381-394, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28314462

RESUMO

It is clear that environmental influences impact the structure and function of the human brain, and thus, thoughts, actions, and behaviors. These in turn influence whether an individual engages in high-risk (drugs, alcohol, violence) or health-promoting (exercise, meditation, music) activities. The developmental mismatch between cortical and subcortical maturation of the transitional age brain places college students at risk for negative outcomes. This article argues that the prescription of incentive-based behavioral change and brain-building activities simply make good scientific, programmatic, and financial sense for colleges and universities. The authors present University of Vermont Wellness Environment as an example.


Assuntos
Encéfalo/crescimento & desenvolvimento , Comportamentos Relacionados com a Saúde , Promoção da Saúde/métodos , Desenvolvimento Humano/fisiologia , Estudantes/psicologia , Universidades , Adolescente , Adulto , Humanos , Adulto Jovem
7.
Am J Physiol Renal Physiol ; 308(9): F956-66, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25673809

RESUMO

Endothelial cells perform key homeostatic functions such as regulating blood flow, permeability, and aiding immune surveillance for pathogens. While endothelial activation serves normal physiological adaptation, maladaptation of these endothelial functions has been identified as an important effector mechanism in the progression of renal disease as well as the associated development of cardiovascular disease. The primary interface between blood and the endothelium is the glycocalyx. This carbohydrate-rich gel-like structure with its associated proteins mediates most of the regulatory functions of the endothelium. Because the endothelial glycocalyx is a highly dynamic and fragile structure ex vivo, and traditional tissue processing for staining and perfusion-fixation usually results in a partial or complete loss of the glycocalyx, studying its dimensions and function has proven to be challenging. In this review, we will outline the core functions of the glycocalyx and focus on different techniques to study structure-function relationships in kidney and vasculature.


Assuntos
Células Endoteliais/ultraestrutura , Glicocálix/ultraestrutura , Nefropatias/patologia , Rim/irrigação sanguínea , Microscopia , Animais , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Humanos , Nefropatias/metabolismo , Nefropatias/fisiopatologia , Microscopia/métodos , Manejo de Espécimes , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...