Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(19): 30884-30893, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710621

RESUMO

Spintronic terahertz emitters promise terahertz sources with an unmatched broad frequency bandwidth that are easy to fabricate and operate, and therefore easy to scale at low cost. However, current experiments and proofs of concept rely on free-space ultrafast pump lasers and rather complex benchtop setups. This contrasts with the requirements of widespread industrial applications, where robust, compact, and safe designs are needed. To meet these requirements, we present a novel fiber-tip spintronic terahertz emitter solution that allows spintronic terahertz systems to be fully fiber-coupled. Using single-mode fiber waveguiding, the newly developed solution naturally leads to a simple and straightforward terahertz near-field imaging system with a 90%-10% knife-edge-response spatial resolution of 30 µm.

2.
Nanomaterials (Basel) ; 13(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299613

RESUMO

In this article, we investigate optically induced terahertz radiation in ferromagnetic FeCo layers of varying thickness on Si and SiO2 substrates. Efforts have been made to account for the influence of the substrate on the parameters of the THz radiation generated by the ferromagnetic FeCo film. The study reveals that the thickness of the ferromagnetic layer and the material of the substrate significantly affect the generation efficiency and spectral characteristics of the THz radiation. Our results also emphasize the importance of accounting for the reflection and transmission coefficients of the THz radiation when analyzing the generation process. The observed radiation features correlate with the magneto-dipole mechanism, triggered by the ultrafast demagnetization of the ferromagnetic material. This research contributes to a better understanding of THz radiation generation mechanisms in ferromagnetic films and may be useful for the further development of THz technology applications in the field of spintronics and other related areas. A key discovery of our study is the identification of a nonmonotonic relationship between the radiation amplitude and pump intensity for thin films on semiconductor substrates. This finding is particularly significant considering that thin films are predominantly used in spintronic emitters due to the characteristic absorption of THz radiation in metals.

3.
Materials (Basel) ; 14(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34772004

RESUMO

We report an increase in terahertz (THz) radiation efficiency due to FeCo/WSe2 structures in the reflection geometry. This can be attributed to an absorption increase in the alloy FeCo layer at the input FeCo/WSe2 interface due to constructive interference, as well as to the backward transport of hot carriers from FeCo to WSe2. In contrast to the transmission geometry, the THz generation efficiency in the reflection is much less dependent on the magnetic layer thickness. Our results suggest a cheap and efficient way to improve the characteristics of THz spintronic emitters with the conservation of a full set of their important properties.

4.
Sci Rep ; 11(1): 697, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33437014

RESUMO

Polarization of electromagnetic waves plays an extremely important role in interaction of radiation with matter. In particular, interaction of polarized waves with ordered matter strongly depends on orientation and symmetry of vibrations of chemical bonds in crystals. In quantum technologies, the polarization of photons is considered as a "degree of freedom", which is one of the main parameters that ensure efficient quantum computing. However, even for visible light, polarization control is in most cases separated from light emission. In this paper, we report on a new type of polarization control, implemented directly in a spintronic terahertz emitter. The principle of control, realized by a weak magnetic field at room temperature, is based on a spin-reorientation transition (SRT) in an intermetallic heterostructure TbCo2/FeCo with uniaxial in-plane magnetic anisotropy. SRT is implemented under magnetic field of variable strength but of a fixed direction, orthogonal to the easy magnetization axis. Variation of the magnetic field strength in the angular (canted) phase of the SRT causes magnetization rotation without changing its magnitude. The charge current excited by the spin-to-charge conversion is orthogonal to the magnetization. As a result, THz polarization rotates synchronously with magnetization when magnetic field strength changes. Importantly, the radiation intensity does not change in this case. Control of polarization by SRT is applicable regardless of the spintronic mechanism of the THz emission, provided that the polarization direction is determined by the magnetic moment orientation. The results obtained open the prospect for the development of the SRT approach for THz emission control.

5.
Sci Rep ; 10(1): 15785, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978474

RESUMO

Intermetallic heterostructures of rare-earth and transition metals exhibit physical properties prospective for various applications. These structures combine giant magnetostriction, controllable magnetic anisotropy, magneto-optical activity and allow spin reorientation transitions (SRT) induced by magnetic field at room temperature. Here, we present the results of a study of spin dynamics induced by ultrafast optical excitation in the [Formula: see text] heterostructure. The time dependence of the light polarization rotation excited by a pump optical pulse with a duration of 35 fs was measured in the total range of the SRT created by external DC magnetic field. We found hysteretic dependence of the polarization rotation on magnetizing field that is specific for spin dynamics near SRT. Enhancement of the rotation is observed in the critical points of the SRT and near the points of magnetization switch from metastable to stable spin states. In the time-domain, two characteristic delays of 20 ps and 200 ps were found, corresponding to the maximum deviation of the light polarization after excitation. The first is explained by the precession motion of spins out of the plane of the structure. The latter is accounted for the spin in-plane deviation from its initial position and thermal relaxation of the anisotropy.

6.
J Phys Condens Matter ; 32(22): 225803, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32050169

RESUMO

The magnetic moment dynamics excited by 35 fs laser pulses in TbCo2/FeCo heterostructure is experimentally investigated by pump-probe technique. The studies are carried out in two typical geometries with magnetizing field perpendicular and along to the easy magnetization axis. In the 'easy axis' orientation, high-frequency oscillations of magnetic moments odd with respect to the sign of the magnetizing field are observed using the magneto-optical Kerr effect. In the perpendicular 'hard axis' orientation corresponding to the spin reorientation phase, the experiment shows oscillations that are even with respect to the field. The maximum angle of Kerr rotation as a function of the magnetizing field strength depicts a specific hysteretic loop that reveals ultrafast optical control of uniaxial magnetic anisotropy originally induced during deposition of the heterostructure in a DC magnetic field. The results provide new ways of ultrafast control of magnetic states in exchange coupled intermetallic heterostructures designed for spintronic applications.

7.
Sci Rep ; 7(1): 2888, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28588241

RESUMO

Magnetoplasmonics, combining magnetic and plasmonic functions, has attracted increasing attention owing to its unique magnetic and optical properties in various nano-architectures. In this work, Ag, CoFeB and ITO layers are fabricated on anodic aluminum oxide (AAO) porous films to form hybrid multi-layered nanoporous thin films by magnetron sputtering deposition process. The designed nanostructure supports localized surface plasmon resonance (LSPR) and tunable magneto-optical (MO) activity, namely, the sign inversion, which can be controlled by AAO porous film geometry (pore diameter and inter-pore spacing) flexibly. The physical mechanism of this special MO phenomena is further analyzed and discussed by the correlation of Kerr rotation and electronic oscillations controlled by the surface plasmon resonance that is related to the nanoporous structure.

8.
Inorg Chem ; 50(24): 12499-507, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22074395

RESUMO

The (Ba,Sr)FeO(3-δ) system is known for its strong tendency for oxygen and vacancies to order into several forms including fully ordered pseudobrownmillerites, hexagonal perovskites with segregation of the vacancies in particular anionic layers and low deficient (pseudo)cubic compounds (generally δ < 0.27, Fe(3/4+)). We show for the first time, using a simple chemical process, the easy access to a large amount of vacancies (δ ≈ 0.5, Fe(3+)) within the room-temperature stable tetragonal (pseudocubic) Sr(0.8)Ba(0.2)FeF(~0.1)(O,F)(~2.5.) The drastic effect of the incorporation of a minor amount of fluoride passes through the repartition of local O/F/□ constraints shifting the tolerance factor into the pseudocubic range for highly deficient compounds. It is stable up to 670 K, where an irreversible reoxidation process occurs, leading to the cubic-form. The comparison with the cubic oxide Sr(0.8)Ba(0.2)FeO(~2.7) shows the increase of the resistivity (3D-VRH model) by two decades due to the almost single valent Fe(3+) of the oxofluoride. In addition, the G-type magnetic ordering shows relatively weak moment for Fe(3+) cations (M(Fe) ≈ 2.64(1) µB at room temperature) attributed to incoherent magnetic components expected from local disorder in such anionic-deficient compounds.

9.
J Am Chem Soc ; 133(28): 10901-9, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21648418

RESUMO

The diversification of antiferromagnetic (AFM) oxides with high Néel temperature is of fundamental as well as technical interest if one considers the need for robust AFM in the field of spin-tronics (exchange bias, multiferroics, etc.). Within the broad series of so-called hexagonal perovskites (HP), the existence of face-sharing octahedral units drastically lowers the strength of magnetic exchanges as compared to corner-sharing octahedral edifices. Here, we show that the partial introduction of F(-) in several Fe-based HP types leads to a drastic increase of the AFM ordering close to the highest values reported in iron oxides (T(N) ≈ 700 K). Our experimental results are supported by ab initio calculations. The T(N) increase is explained by the structural effect of the aliovalent F(-) for O(2-) substitution occurring in preferred anionic positions: it leads to local changes of the Fe-O-Fe connectivity and to chemical reduction into predominant Fe(3+), both responsible for drastic magnetic changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...