Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 79(10): 10E919, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044574

RESUMO

The distance radiation waves that supersonically propagate in optically thick, diffusive media are energy sensitive. A blast wave can form in a material when the initially diffusive, supersonic radiation wave becomes transonic. Under specific conditions, the blast wave is visible with radiography as a density perturbation. [Peterson et al., Phys. Plasmas 13, 056901 (2006)] showed that the time-integrated drive energy can be measured using blast wave positions with uncertainties less than 10% at the Z Facility. In some cases, direct measurements of energy loss through diagnostic holes are not possible with bolometric and x-ray radiometric diagnostics. Thus, radiography of high compression blast waves can serve as a complementary technique that provides time-integrated energy loss through apertures. In this paper, we use blast waves to characterize the energy emerging through a 2.4 mm aperture and show experimental results in comparison to simulations.

2.
J Chem Phys ; 123(2): 24703, 2005 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-16050762

RESUMO

We report a novel crystalline carbon-cage structure synthesized from laser-driven shock wave loading of a graphite-copper mixture to about 14+/-2 GPa and 1000 +/- 200 K. Quite unexpectedly, it can be structurally related to an extremely compressed three-dimensional C60 polymer with random displacement of C atoms around average positions equivalent to those of distorted C60 cages. Thus, the present carbon-cage structure represents a structural crossing point between graphite interlayer bridging and C60 polymerization as the two ways of forming diamond from two-dimensional and molecular carbon.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(3 Pt 2): 036406, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15089414

RESUMO

The Trident laser was used to induce shock waves in samples of solid elements, with atomic numbers ranging from Be to Au, using pulses of 527 nm light around 1 ns long with irradiances of the order of 0.1 to 10 PW/m(2). States induced by the resulting ablation process were investigated using laser Doppler velocimetry to measure the velocity history of the opposite surface. By varying the energy in the laser pulse, relations were inferred between the irradiance and the induced pressure. For samples in vacuo, an irradiance constant in time does not produce a constant pressure. Radiation hydrodynamics simulations were used to investigate the relationship between the precise pulse shape and the pressure history. In this regime of time and irradiance, it was possible to reproduce the experimental data to within their uncertainty by including conductivity-dependent deposition of laser energy, heat conduction, gray radiation diffusion, and three temperature hydrodynamics in the treatment of the plasma, with ionizations calculated using the Thomas-Fermi equation. States induced in the solid sample were fairly insensitive to the details of modeling in the plasma, so Hugoniot points may be estimated from experiments of this type given a reasonable model of the plasma. More useful applications include the generation of dynamic loading to investigate compressive strength and phase transitions, and for sample recovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...