Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 32(10): 886-896, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35871443

RESUMO

The study of multivalent carbohydrate-protein interactions remains highly complicated and sometimes rendered impossible due to aggregation problems. Biolayer interferometry is emerging as a tool to monitor such complex interactions. In this study, various glycoclusters and dendrimers were prepared and evaluated as ligands for lectins produced by pathogenic bacteria Pseudomonas aeruginosa (LecA and Lec B) and Burkholderia ambifaria (BambL). Reliable kinetic and thermodynamic parameters could be measured, and immobilization of either lectin or ligands resulted in high quality data. The methods gave results in full agreement with previous isothermal titration calorimetry experiments, and presented strong advantages because they require less quantity and purity for the biomolecules.


Assuntos
Glicoconjugados , Lectinas , Dendrímeros/química , Glicoconjugados/química , Interferometria/métodos , Lectinas/química , Ligantes
2.
Biomater Sci ; 9(11): 4076-4085, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33913968

RESUMO

The recruitment of endogenous antibodies against cancer cells has become a reliable antitumoral immunotherapeutic alternative over the last decade. The covalent attachment of antibody and tumor binding modules (ABM and TBM) within a single, well-defined synthetic molecule was indeed demonstrated to promote the formation of an interacting ternary complex between both the antibodies and the targeted cell, which usually results in the simultaneous immune-mediated cellular destruction. In a preliminary study, we have described the first Antibody Recruiting Glycodendrimers (ARGs), combining cRGD as ligands for the αVß3-expressing melanoma cell line M21 and Rha as ligand for natural IgM, and demonstrated that multivalency is an essential requirement to form this complex. In the present study, we synthesized a new series of ARGs composed of ABMs, i.e. self-condensed rhamnosylated cyclopeptide and polylysine dendrimer, which have been conjugated to the TBM with or without spacer. Flow cytometry and confocal microscopy experiments with human serum and different cell lines revealed that the ABM geometry significantly influences the ternary complex formation in M21, whereas no significant binding occurs in BT 549 having low integrin expression. In addition, we demonstrate with a cellular viability assay that ARGs induce high level of cytotoxicity against M21 which is also in close correlation with the ABM structure. In particular, we have shown that ARG combining cyclopeptide core and branches, with or without spacer, induce 40-57% of selective cytotoxicity against M21 cells in the presence of human serum as the unique source of immunity effectors. Finally, we also highlight that the spacer between ABM and TBM enables an increase of the immune-mediate cytotoxicity even with ABM of lower valency.


Assuntos
Anticorpos , Melanoma , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Ligantes , Melanoma/tratamento farmacológico
3.
Chem Sci ; 11(17): 4488-4498, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-34122907

RESUMO

Tumor associated carbohydrate antigens (TACAs), such as the Tn antigen, have emerged as key targets for the development of synthetic anticancer vaccines. However, the induction of potent and functional immune responses has been challenging and, in most cases, unsuccessful. Herein, we report the design, synthesis and immunological evaluation in mice of Tn-based vaccine candidates with multivalent presentation of the Tn antigen (up to 16 copies), both in its native serine-linked display (Tn-Ser) and as an oxime-linked Tn analogue (Tn-oxime). The high valent vaccine prototypes were synthesized through a late-stage convergent assembly (Tn-Ser construct) and a versatile divergent strategy (Tn-oxime analogue), using chemoselective click-type chemistry. The hexadecavalent Tn-oxime construct induced robust, Tn-specific humoral and CD4+/CD8+ cellular responses, with antibodies able to bind the Tn antigen on the MCF7 cancer cell surface. The superior synthetic accessibility and immunological properties of this fully-synthetic vaccine prototype makes it a compelling candidate for further advancement towards safe and effective synthetic anticancer vaccines.

4.
Chemistry ; 25(68): 15429, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804008

RESUMO

Invited for the cover of this issue is Olivier Renaudet and co-workers at the Université Grenoble Alpes and funded by the European Research Council (CoG "LEGO'" no. 647938). The image illustrates a synthetic chemist playing with supramolecular structures to kill cancer cells by using natural antibodies present in the blood stream. Read the full text of the article at 10.1002/chem.201903327.


Assuntos
Anticorpos/imunologia , Glicoconjugados , Anticorpos/química , Humanos
5.
Chemistry ; 25(68): 15508-15515, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31613028

RESUMO

We have developed a fully synthetic and multifunctional antibody-recruiting molecule (ARM) to guide natural antibodies already present in the blood stream against cancer cells without pre-immunization. Our ARM is composed of antibody and tumor binding modules (i.e., ABM and TBM) displaying clustered rhamnose and cyclo-RGD, respectively. By using a stepwise approach, we have first demonstrated the importance of multivalency for efficient recognition with naturel IgM and αv ß3 integrin expressing M21 tumor cell line. Once covalently conjugated by click chemistry, we confirmed by flow cytometry and confocal microscopy that the recognition properties of both the ABM and TBM are conserved, and more importantly, that the resulting ARM promotes the formation of a ternary complex between natural IgM and cancer cells, which is required for the stimulation of the cytotoxic immune response in vivo. Due to the efficiency of the synthetic process, a larger diversity of heterovalent ligands could be easily explored by using the same multivalent approach and could open new perspectives in this field.


Assuntos
Anticorpos/imunologia , Glicoconjugados/química , Integrina alfaVbeta3/metabolismo , Ramnose/química , Linhagem Celular Tumoral , Química Click , Citometria de Fluxo , Humanos , Imunização , Integrina alfaVbeta3/química , Ligantes
6.
ACS Omega ; 3(10): 14013-14020, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30411056

RESUMO

Carbohydrate-protein interactions play key roles in a wide variety of biological processes. These interactions are usually weak, with dissociation constants in the low millimolar to high micromolar range. Nature uses multivalency to reach high avidities via the glycoside cluster effect. Capitalizing on this effect, numerous synthetic multivalent glycoconjugates have been described and used as ligands for carbohydrate-binding proteins. However, valency is only one of the several parameters governing the binding mechanisms that are different for every biological receptor, making it almost impossible to predict. In this context, ligand optimization requires the screening of a large number of structures with different valencies, rigidities/flexibilities, and architectures. In this article, we describe a screening platform based on a glycodendrimer array and its use to determine the key parameters for high-affinity ligands of lectin. Several glycoclusters and glycodendrimers displaying varying numbers of α-N-acetylgalactosamine residues were covalently attached on glass slides, and their bindings were studied with the fluorophore-functionalized Helix pomatia agglutinin (HPA) used as a lectin model. This technique requires minimal quantities of glycoconjugate compared to those for other techniques and affords useful information on the binding strength. Building of the glycodendrimer array and quantification of the interactions with HPA are described.

7.
Org Biomol Chem ; 16(46): 8899-8903, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30264842

RESUMO

The study of complex multivalent carbohydrate-protein interactions remains highly complicated and sometimes rendered impossible due to aggregation problems. In this study, we demonstrate that bio-layer interferometry is an excellent complementary method to standard techniques such as SPR and ITC. Using tetra- and hexadecavalent GalNAc glycoconjugates and Helix pomatia agglutinin (HPA) as a model lectin, we were able to measure reliable kinetic and thermodynamic parameters of multivalent interactions going from the micro to the nanomolar range.


Assuntos
Acetilgalactosamina/metabolismo , Glicoconjugados/metabolismo , Caracois Helix/metabolismo , Interferometria/métodos , Lectinas/metabolismo , Animais , Cinética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...