Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 13581, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051575

RESUMO

Cytochrome P450 monooxygenases CYP101A1 and MycG catalyze regio- and stereospecific oxidations of their respective substrates, d-camphor and mycinamicin IV. Despite the low sequence homology between the two enzymes (29% identity) and differences in size and hydrophobicity of their substrates, the conformational changes that occur upon substrate binding in both enzymes as determined by solution NMR methods show some striking similarities. Many of the same secondary structural features in both enzymes are perturbed, suggesting the existence of a common mechanism for substrate binding and recognition in the P450 superfamily.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cânfora 5-Mono-Oxigenase/química , Cânfora 5-Mono-Oxigenase/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Cânfora/química , Cânfora/metabolismo , Domínio Catalítico , Macrolídeos/química , Macrolídeos/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Proteica , Estereoisomerismo , Especificidade por Substrato
2.
Biochemistry ; 56(21): 2701-2714, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28488849

RESUMO

MycG is a P450 monooxygenase that catalyzes the sequential hydroxylation and epoxidation of mycinamicin IV (M-IV), the last two steps in the biosynthesis of mycinamicin II, a macrolide antibiotic isolated from Micromonospora griseorubida. The crystal structure of MycG with M-IV bound was previously determined but showed the bound substrate in an orientation that did not rationalize the observed regiochemistry of M-IV hydroxylation. Nuclear magnetic resonance paramagnetic relaxation enhancements provided evidence of an orientation of M-IV in the MycG active site more compatible with the observed chemistry, but substrate-induced changes in the enzyme structure were not characterized. We now describe the use of amide 1H-15N residual dipolar couplings as experimental restraints in solvated "soft annealing" molecular dynamics simulations to generate solution structural ensembles of M-IV-bound MycG. Chemical shift perturbations, hydrogen-deuterium exchange, and 15N relaxation behavior provide insight into the dynamic and electronic perturbations in the MycG structure in response to M-IV binding. The solution and crystallographic structures are compared, and the possibility that the crystallographic orientation of bound M-IV represents an inhibitory mode is discussed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Simulação de Dinâmica Molecular , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Soluções , Especificidade por Substrato
3.
Sci Rep ; 6: 22035, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911901

RESUMO

Cytochrome P450 monooxygenases typically catalyze the insertion of one atom of oxygen from O2 into unactivated carbon-hydrogen and carbon-carbon bonds, with concomitant reduction of the other oxygen atom to H2O by NAD(P)H. Comparison of the average structures of the camphor hydroxylase cytochrome P450(cam) (CYP101) obtained from residual dipolar coupling (RDC)-restrained molecular dynamics (MD) in the presence and absence of substrate camphor shows structural displacements resulting from the essential collapse of the active site upon substrate removal. This collapse has conformational consequences that extend across the protein structure, none of which were observed in analogous crystallographic structures. Mutations were made to test the involvement of the observed conformational changes in substrate binding and recognition. All of the mutations performed based upon the NMR-detected perturbations, even those remote from the active site, resulted in modified substrate selectivity, enzyme efficiency and/or haem iron spin state. The results demonstrate that solution NMR can provide insights into enzyme structure-function relationships that are difficult to obtain by other methods.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Sítios de Ligação , Cânfora 5-Mono-Oxigenase/química , Cânfora 5-Mono-Oxigenase/genética , Cânfora 5-Mono-Oxigenase/metabolismo , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Mutação , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
4.
J Biol Chem ; 287(45): 37880-90, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22952225

RESUMO

The majority of characterized cytochrome P450 enzymes in actinomycete secondary metabolic pathways are strictly substrate-, regio-, and stereo-specific. Examples of multifunctional biosynthetic cytochromes P450 with broader substrate and regio-specificity are growing in number and are of particular interest for biosynthetic and chemoenzymatic applications. MycG is among the first P450 monooxygenases characterized that catalyzes both hydroxylation and epoxidation reactions in the final biosynthetic steps, leading to oxidative tailoring of the 16-membered ring macrolide antibiotic mycinamicin II in the actinomycete Micromonospora griseorubida. The ordering of steps to complete the biosynthetic process involves a complex substrate recognition pattern by the enzyme and interplay between three tailoring modifications as follows: glycosylation, methylation, and oxidation. To understand the catalytic properties of MycG, we structurally characterized the ligand-free enzyme and its complexes with three native metabolites. These include substrates mycinamicin IV and V and their biosynthetic precursor mycinamicin III, which carries the monomethoxy sugar javose instead of the dimethoxylated sugar mycinose. The two methoxy groups of mycinose serve as sensors that mediate initial recognition to discriminate between closely related substrates in the post-polyketide oxidative tailoring of mycinamicin metabolites. Because x-ray structures alone did not explain the mechanisms of macrolide hydroxylation and epoxidation, paramagnetic NMR relaxation measurements were conducted. Molecular modeling based on these data indicates that in solution substrate may penetrate the active site sufficiently to place the abstracted hydrogen atom of mycinamicin IV within 6 Å of the heme iron and ~4 Å of the oxygen of iron-ligated water.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Macrolídeos/metabolismo , Micromonospora/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Compostos de Epóxi/metabolismo , Glicosilação , Hidroxilação , Macrolídeos/química , Espectroscopia de Ressonância Magnética , Metilação , Micromonospora/genética , Micromonospora/metabolismo , Modelos Moleculares , Estrutura Molecular , Mutação , Oxirredução , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA