Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 161(4)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39041877

RESUMO

The uranium-containing molecules US2, OUS, and USe have been investigated using a pulsed laser ablation supersonic beam molecular source with time-of-flight mass spectrometric detection. Spectra have been recorded using the resonant two-photon ionization method over the spectroscopic range from 277 to 238 nm. These species have a myriad of excited electronic states in this spectroscopic region, leading to spectra that are highly congested and appear quasicontinuous. Sharp predissociation thresholds are observed, allowing precise bond dissociation energies to be measured. In the case of the triatomic molecules, it was necessary to use one laser for excitation and a delayed laser for ionization in order to observe a sharp predissociation threshold that allowed a precise bond dissociation energy to be measured. The resulting thermochemical values are D0(SU-S) = 4.910 ± 0.003 eV, D0(OU-S) = 5.035 ± 0.004 eV, and D0(USe) = 4.609 ± 0.009 eV. These results provide the first measurement of D0(USe) and reduce the error limits in the previous values of D0(SU-S) and D0(OU-S) by a factor of more than 70.

2.
Inorg Chem ; 62(24): 9589-9601, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37285469

RESUMO

Resonant two-photon ionization experiments have been conducted to probe the bond dissociation energy (BDE) of the lanthanide-carbon bond, allowing the BDEs of CeC, PrC, NdC, LuC, and Tm-C2 to be measured to high precision. Values of D0(CeC) = 4.893(3) eV, D0(PrC) = 4.052(3) eV, D0(NdC) = 3.596(3) eV, D0(LuC) = 3.685(4) eV, and D0(Tm-C2) = 4.797(6) eV are obtained. Additionally, the adiabatic ionization energy of LuC was measured, giving IE(LuC) = 7.05(3) eV. The electronic structure of these species, along with the previously measured LaC, has been further investigated using quantum chemical calculations. Despite LaC, CeC, PrC, and NdC having ground electronic configurations that differ only in the number of 4f electrons present and have virtually identical bond orders, bond lengths, fundamental stretching frequencies, and metallic oxidation states, a peculiar 1.30 eV range in bond dissociation energies exists for these molecules. A natural bond orbital analysis shows that the metal atoms in these molecules have a natural charge of +1 with a 5d2 4fn 6s0 configuration while the carbon atom has a natural charge of -1 and a 2p3 configuration. The diabatic bond dissociation energies, calculated with respect to the lowest energy level of this separated ion configuration, show a greatly reduced energy range of 0.32 eV, with the diabatic BDE decreasing as the amount of 4f character in the σ-bond increases. Thus, the wide range of measured BDEs for these molecules is a consequence of the variation in atomic promotion energies at the separated ion limit. TmC2 has a smaller BDE than the other LnC2 molecules, due to the tiny amount of 5d participation in the valence molecular orbitals.

3.
J Phys Chem A ; 125(20): 4420-4434, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34003640

RESUMO

The predissociation thresholds of the early transition metal boride diatomics (MB, M = Sc, Ti, V, Y, Zr, Nb, La, Hf, Ta, W) have been measured using resonant two-photon ionization (R2PI) spectroscopy, allowing for a precise assignment of the bond dissociation energy (BDE). No previous experimental measurements of the BDE exist in the literature for these species. Owing to the high density of electronic states arising from the ground and low-lying separated atom limits in these open d-subshell species, a congested spectrum of vibronic transitions is observed as the energy of the ground separated atom limit is approached. Nonadiabatic and spin-orbit interactions among these states, however, provide a pathway for rapid predissociation as soon as the ground separated atom limit is reached, leading to a sharp decrease in signal to background levels when this limit is reached. Accordingly, the BDEs of the early transition metal borides have been assigned as D0(ScB) 1.72(6) eV, D0(TiB) 1.956(16) eV, D0(VB) 2.150(16) eV, D0(YB) 2.057(3) eV, D0(ZrB) 2.573(5) eV, D0(NbB) 2.989(12) eV, D0(LaB) 2.086(18) eV, D0(HfB) 2.593(3) eV, D0(TaB) 2.700(3) eV, and D0(WB) 2.730(4) eV. Additional insight into the chemical bonding and electronic structures of these species has been achieved by quantum chemical calculations.

4.
J Chem Phys ; 154(12): 124307, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810674

RESUMO

Resonant two-photon ionization spectroscopy has been employed to observe sharp predissociation thresholds in the spectra of the lanthanide sulfides and selenides for the 4f metals Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Lu. As these molecules possess a large density of electronic states near the ground separated atom limit, these predissociation thresholds are argued to coincide with the true 0 K bond dissociation energies (BDEs). This is because spin-orbit and nonadiabatic couplings among these states allow the molecules to predissociate rapidly when the BDE is reached or exceeded. The measured BDEs, in eV, are as follows: 5.230(3) (PrS), 4.820(3) (NdS), 4.011(17) (SmS), 3.811(8) (EuS), 5.282(5) (GdS), 5.292(3) (TbS), 4.298(3) (DyS), 4.251(3) (HoS), 4.262(3) (ErS), 5.189(3) (LuS), 4.496(3) (PrSe), 4.099(3) (NdSe), 3.495(17) (SmSe), 3.319(3) (EuSe), 4.606(3) (GdSe), 4.600(6) (TbSe), 3.602(3) (DySe), 3.562(3) (HoSe), 3.587(3) (ErSe), and 4.599(6) (LuSe). Through the use of thermochemical cycles, the 0 K gaseous heat of formation, ΔfH0K ○, is reported for each molecule. A threshold corresponding to the onset of two-photon ionization in EuSe was also observed, providing the ionization energy of EuSe as 6.483(10) eV. Through a thermochemical cycle and the above reported BDE of the neutral EuSe molecule, the BDE for the Eu+-Se cation was also determined as D0(Eu+-Se) = 2.506(10) eV. Bonding trends of the lanthanide sulfides and selenides are discussed. Our previous observation that the transition metal sulfides are 15.6% more strongly bound than the corresponding selenides continues to hold true for the lanthanides as well.

5.
J Chem Phys ; 153(7): 074303, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32828096

RESUMO

Through the use of resonant two-photon ionization spectroscopy, sharp predissociation thresholds have been identified in the spectra of CrO, MoO, RuO, and RhO. Similar thresholds have previously been used to measure the bond dissociation energies (BDEs) of many molecules that have a high density of vibronic states at the ground separated atom limit. A high density of states allows precise measurement of the BDE by facilitating prompt dissociation to ground state atoms when the BDE is exceeded. However, the number of states required for prompt predissociation at the thermochemical threshold is not well defined and undoubtedly varies from molecule to molecule. The ground separated atom limit generates 315 states for RuO, 252 states for RhO, and 63 states for CrO and MoO. Although comparatively few states derive from this limit for CrO and MoO, the observation of sharp predissociation thresholds for all four molecules nevertheless allows BDEs to be assigned as 4.863(3) eV (RuO), 4.121(3) eV (RhO), 4.649(5) eV (CrO), and 5.414(19) eV (MoO). Thermochemical cycles are used to derive the enthalpies of formation of the gaseous metal oxides and to obtain IE(RuO) = 8.41(5) eV, IE(RhO) = 8.56(6) eV, D0(Ru-O-) = 4.24(2) eV, D0(Cr-O-) = 4.409(8) eV, and D0(Mo-O-) = 5.243(20) eV. The mechanisms leading to prompt predissociation at threshold in the cases of CrO and MoO are discussed. Also presented is a discussion of the bonding trends for the transition metal oxides, which are compared to the previously measured transition metal sulfides.

6.
J Chem Phys ; 152(24): 244305, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32610999

RESUMO

The spectra of RuS, OsS, CoS, RhS, IrS, and PtS have been recorded near their respective bond dissociation energies using resonant two-photon ionization spectroscopy. The spectra display an abrupt drop to baseline when the bond dissociation energy (BDE) is exceeded. It is argued that spin-orbit and nonadiabatic interactions among the myriad of states that result from the ground and low-lying separated atom limits cause the molecules to predissociate rapidly as soon as the ground separated atom limit is exceeded in energy. Thus, the observed sharp predissociation thresholds are assigned as the 0 K BDEs of the molecules. With this assumption, the BDEs are assigned as follows: 4.071(8) eV (RuS), 4.277(3) eV (OsS), 3.467(5) eV (CoS), 3.611(3) eV (RhS), 4.110(3) eV (IrS), and 4.144(8) eV (PtS). Using thermochemical cycles, the gas-phase enthalpies of formation at 0 K, ΔfH0 K°, were calculated to be 531.8(4.3) kJ mol-1 (RuS), 651.2(6.3) kJ mol-1 (OsS), 365.3(2.2) kJ mol-1 (CoS), 481.5(2.1) kJ mol-1 (RhS), 546.7(6.3) kJ mol-1 (IrS), and 438.9(1.5) kJ mol-1 (PtS). The ionization energies of RuS, CoS, and RhS were also calculated using data on the BDEs of the associated cations and were found to be 8.39(10) eV (RuS), 8.40(9) eV (CoS), and 8.46(12) eV (RhS). Combining these data with predissociation measurements of other transition metal sulfide BDEs, the periodic trends in the transition metal sulfide BDEs are discussed and the BDEs of the transition metal sulfides are compared to those of the corresponding selenides. The BDEs of the sulfides are found to be 15.4% greater than those of the corresponding sulfides.

7.
J Chem Phys ; 152(12): 124305, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32241137

RESUMO

The diatomic transition metal selenides, MSe (M = Sc, Y, Ru, Os, Co, Rh, Ir, and Pt), were studied by resonant two-photon ionization spectroscopy near their respective bond dissociation energies. As these molecules exhibit high densities of vibronic states near their dissociation limits, the spectra typically appear quasicontinuously at these energies. Spin-orbit and nonadiabatic couplings among the multitudes of potential curves allow predissociation to occur on a rapid timescale when the molecule is excited to states lying above the ground separated atom limit. This dissociation process occurs so rapidly that the molecules are dissociated before they can be ionized by the absorption of a second photon. This results in an abrupt drop in the ion signal that is assigned as the 0 K bond dissociation energy for the molecule, giving bond dissociation energies of 4.152(3) eV (ScSe), 4.723(3) eV (YSe), 3.482(3) eV (RuSe), 3.613(3) eV (OsSe), 2.971(6) eV (CoSe), 3.039(9) eV (RhSe), 3.591(3) eV (IrSe), and 3.790(31) eV (PtSe). The enthalpies of formation, ΔfH0K° (g), for each diatomic metal selenide were calculated using thermochemical cycles, yielding ΔfH0K° (g) values of 210.9(4.5) kJ mol-1 (ScSe), 203.5(4.5) kJ mol-1 (YSe), 549.2(4.5) kJ mol-1 (RuSe), 675.9(6.5) kJ mol-1 (OsSe), 373.9(2.6) kJ mol-1 (CoSe), 497.4(2.7) kJ mol-1 (RhSe), 557.4(6.5) kJ mol-1 (IrSe), and 433.7(3.6) kJ mol-1 (PtSe). Utilizing a thermochemical cycle, the ionization energy for ScSe is estimated to be about 7.07 eV. The bonding trends of the transition metal selenides are discussed.

8.
J Chem Phys ; 152(19): 194307, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33687227

RESUMO

The early transition metal diatomic sulfides, MS, M = Sc, Y, Ti, Zr, Hf, Nb, and Ta, have been investigated using resonant two-photon ionization spectroscopy in the vicinity of their bond dissociation energies (BDEs). Due to the high density of vibronic states in this energy range, the molecular spectra appear quasicontinuous, and when the excitation energy exceeds the ground separated atom limit, excited state decay by dissociation becomes possible. The dissociation process typically occurs so rapidly that the molecule falls apart before a second photon can be absorbed to ionize the species, leading to a sharp drop in ion signal, which is identified as the 0 K BDE. The observed predissociation thresholds yield BDEs of 4.852(10) eV (ScS), 5.391(3) eV (YS), 4.690(4) eV (TiS), 5.660(4) eV (ZrS), 5.780(20) eV (HfS), 5.572(3) eV (NbS), and 5.542(3) eV (TaS). Utilizing thermochemical cycles, the enthalpies of formation, ΔfH0K o(g), of 182.7(4.3) kJ mol-1 (ScS), 178.3(4.2) kJ mol-1 (YS), 293.1(16.7) kJ mol-1 (TiS), 337.3(8.4) kJ mol-1 (ZrS), 335.0(6.6) kJ mol-1 (HfS), 467.0(8.0) kJ mol-1 (NbS), and 521.5(2.1) kJ mol-1 (TaS) are obtained. Another thermochemical cycle has been used to combine the previously measured M+-S BDEs with the M-S BDEs and atomic ionization energies to obtain the MS ionization energies of 6.44(5) eV (ScS), 6.12(8) eV (YS), 6.78(7) eV (TiS), 6.60(10) eV (ZrS), and 6.88(9) eV (NbS). Using this same cycle, we obtain D0(Hf+-S) = 4.926(20) eV. The bonding trends of the early transition metal sulfides, along with the corresponding selenides, are discussed.

9.
J Chem Phys ; 151(4): 044302, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370518

RESUMO

The bond dissociation energies (BDEs) of the diatomic late transition metal borides (MB, M = Fe, Co, Ni, Ru, Rh, Os, Ir, and Pt) have been assigned from the measurement of a predissociation threshold using resonant two-photon ionization (R2PI) spectroscopy. The open d-shell configurations of the transition metal constituents in the molecules studied here lead to large ML degeneracies, resulting in a dense manifold of states near the ground separated atom limit. This high density of states causes prompt predissociation to occur as soon as the ground separated atom limit is exceeded, allowing a precise assignment of the BDE of the molecule. The measured predissociation thresholds give BDEs of D0(FeB) = 2.43(2) eV, D0(CoB) = 2.954(3) eV, D0(NiB) = 3.431(4) eV, D0(RuB) = 4.815(3) eV, D0(RhB) = 5.252(3) eV, D0(OsB) = 4.378(3) eV, D0(IrB) = 4.928(10) eV, and D0(PtB) = 5.235(3) eV. The gaseous enthalpies of formation at 0 K for these molecules have been derived using a thermochemical cycle that relates atomic enthalpies of formation and the BDE of the molecule, giving ΔfH0K°(g) (FeB) = 733.6(12.2) kJ mol-1, ΔfH0K°(g) (CoB) = 695.1(12.2) kJ mol-1, ΔfH0K°(g) (NiB) = 652.1(14.7) kJ mol-1, ΔfH0K°(g) (RuB) = 740.2(12.7) kJ mol-1, ΔfH0K°(g) (RhB) = 600.1(12.7) kJ mol-1, ΔfH0K°(g) (OsB) = 921.7(13.6) kJ mol-1, ΔfH0K°(g) (IrB) = 748.0(13.6) kJ mol-1, and ΔfH0K°(g) (PtB) = 613.9(12.2) kJ mol-1. This work reports the first experimental measurements of the BDEs of FeB, CoB, NiB, and OsB. Periodic trends are discussed.

10.
J Chem Phys ; 149(17): 174307, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30409013

RESUMO

Resonant two-photon ionization spectroscopy has been used to investigate the spectra of the diatomic late transition metal silicides, MSi, M = Fe, Ru, Os, Co, Rh, Ir, Ni, and Pt, in the vicinity of the bond dissociation energy. In these molecules, the density of vibronic states is so large that the spectra appear quasicontinuous in this energy range. When the excitation energy exceeds the ground separated atom limit, however, a new decay process becomes available-molecular dissociation. This occurs so rapidly that the molecule falls apart before it can absorb another photon and be ionized. The result is a sharp drop to the baseline in the ion signal, which we identify as occurring at the thermochemical 0 K bond dissociation energy, D0. On this basis, the measured predissociation thresholds provide D0 = 2.402(3), 4.132(3), 4.516(3), 2.862(3), 4.169(3), 4.952(3), 3.324(3), and 5.325(9) eV for FeSi, RuSi, OsSi, CoSi, RhSi, IrSi, NiSi, and PtSi, respectively. Using thermochemical cycles, the enthalpies of formation of the gaseous MSi molecules are derived as 627(8), 700(10), 799(10), 595(8), 599(8), 636(10), 553(12), and 497(8) kJ/mol for FeSi, RuSi, OsSi, CoSi, RhSi, IrSi, NiSi, and PtSi, respectively. Likewise, combining these results with other data provides the ionization energies of CoSi and NiSi as 7.49(7) and 7.62(7) eV, respectively. Chemical bonding trends among the diatomic transition metal silicides are discussed.

11.
J Chem Phys ; 146(14): 144310, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28411603

RESUMO

The bond dissociation energies of FeC, NiC, FeS, NiS, FeSe, and NiSe have been measured by the observation of a predissociation threshold in their resonant two-photon ionization spectra. Because the lowest separated atom limits generate a vast number of potential energy curves, it is thought that the molecules dissociate as soon as the ground separated atom limit is exceeded in energy. From the observed thresholds, dissociation energies have been measured as D0(FeC) = 3.961(19), D0(NiC) = 4.167(3), D0(FeS) = 3.240(3), D0(NiS) = 3.651(3), D0(FeSe) = 2.739(6), and D0(NiSe) = 3.218(3) eV. Through the use of thermochemical cycles, these values have been combined with other precisely known values to improve the accuracy of other quantities, providing: D0(Fe+-C) = 4.270(19) eV, D0(Ni+-C) = 3.435(3) eV, IE(FeS) = 8.06(4) eV, IE(NiS) = 8.82(4) eV, and D0 (Fe-S-) = 2.92(10) or 2.89(10) eV, depending on the reference employed for EA(FeS-). Comparisons to previous values are noted, when available. The periodic trends observed are discussed in terms of a molecular orbital diagram for these species. Finally, these results have also been used to calculate 0 K enthalpies of formation of the gaseous MX molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...