Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(11): 2036-2052.e7, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38688279

RESUMO

Alterations of bases in DNA constitute a major source of genomic instability. It is believed that base alterations trigger base excision repair (BER), generating DNA repair intermediates interfering with DNA replication. Here, we show that genomic uracil, a common type of base alteration, induces DNA replication stress (RS) without being processed by BER. In the absence of uracil DNA glycosylase (UNG), genomic uracil accumulates to high levels, DNA replication forks slow down, and PrimPol-mediated repriming is enhanced, generating single-stranded gaps in nascent DNA. ATR inhibition in UNG-deficient cells blocks the repair of uracil-induced gaps, increasing replication fork collapse and cell death. Notably, a subset of cancer cells upregulates UNG2 to suppress genomic uracil and limit RS, and these cancer cells are hypersensitive to co-treatment with ATR inhibitors and drugs increasing genomic uracil. These results reveal unprocessed genomic uracil as an unexpected source of RS and a targetable vulnerability of cancer cells.


Assuntos
Reparo do DNA , Replicação do DNA , Instabilidade Genômica , Uracila-DNA Glicosidase , Uracila , Humanos , Uracila/metabolismo , Uracila-DNA Glicosidase/metabolismo , Uracila-DNA Glicosidase/genética , Reparo do DNA/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Dano ao DNA , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo
2.
J Pharm Biomed Anal ; 232: 115465, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37220701

RESUMO

Human integral membrane protein 2B (ITM2B or Bri2) is a member of the BRICHOS family, that can attenuate Aß pathology in the brain. As a result, the identification of novel Bri2 BRICHOS client proteins has been sought to help elucidate signaling pathways and the potential identification of novel therapeutic targets. To identify Bri2 BRICHOS interacting partners, we carried out a 'protein fishing' experiment using recombinant human (rh) Bri2 BRICHOS-coated magnetic particles, in combination with proteomic analysis on cytosolic and membrane fractions of cortical homogenates from C57BL/6 J WT mouse. We identified 4 proteins from the cytosolic fractions and 44 proteins from the membrane fractions that had significant interactions (p < 0.05) with Bri2 BRICHOS domain, of which 11 proteins were previously identified as proteins that interacted with Bri2 BRICHOS domain. Enrichment analysis of the retained proteins identified glycolysis/gluconeogenesis as the most enriched pathway, with several proteins identified playing roles in carbon metabolism, amino acid synthesis. The data suggested that Bri2 BRICHOS may have a role in cellular energy demands in the brain via glycolysis and mitochondrial oxidative phosphorylation and may play a role in mitochondrial homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ligação Proteica , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteômica
3.
Mol Cell Neurosci ; 125: 103843, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36935047

RESUMO

Proteins must fold into three-dimensional structures to execute their biological functions. Therefore, maintenance of protein homeostasis, proteostasis, including prevention of protein misfolding is essential for cellular activity and health. Molecular chaperones are key actors in proteostasis. BRICHOS domain is an intramolecular chaperone that also interferes with several aggregation-prone proteins including amyloid ß (Aß), involved in Alzheimer's disease (AD). To extend the knowledge about Bri2 BRICHOS interactome we here used recombinant human (rh) Bri2 BRICHOS-mCherry fusion protein to probe for potential binding partners. Firstly, exogenously added Bri2 BRICHOS-mCherry was used to stain brain sections of wildtype and amyloid precursor protein (App) knock-in AD mice exhibiting robust Aß pathology. Unexpectedly, we found that rh Bri2 BRICHOS-mCherry stained the cytoplasm of neurons which are devoid of Aß deposits. To identify these intraneuronal proteins that bind to the rh Bri2 BRICHOS domain, we performed co-immunoprecipitation (co-IP) of mouse brain hippocampi homogenates using the Bri2 BRICHOS-mCherry probe and analyzed co-IP proteins by LC-MS/MS. This identified several cytoskeletal proteins including spectrin alpha and beta chain, drebrin, tubulin ß3, and ß-actin as binding partners. The interactions were confirmed by a second round of pulldown experiments using rh Bri2 BRICHOS linked to magnetic beads. The interaction of rh Bri2 BRICHOS and tubulin ß3 was further investigated by staining both mouse brain sections and SH-SY5Y neuroblastoma cells with rh Bri2 BRICHOS-mCherry and tubulin ß3 immunostaining, which revealed partial co-localization. These data suggest a possible interplay of extracellular chaperone Bri2 BRICHOS domain in the intracellular space including the cytoskeleton.


Assuntos
Doença de Alzheimer , Neuroblastoma , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cromatografia Líquida , Proteínas do Citoesqueleto , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Espectrometria de Massas em Tandem , Tubulina (Proteína)
4.
J Pharm Biomed Anal ; 198: 113996, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33690096

RESUMO

Human integral membrane protein 2B (ITM2B or Bri2) is a member of the BRICHOS family, proteins that efficiently prevent Aß42 aggregation via a unique mechanism. The identification of novel Bri2 BRICHOS client proteins could help elucidate signaling pathways and determine novel targets to prevent or cure amyloid diseases. To identify Bri2 BRICHOS interacting partners, we carried out a 'protein fishing' experiment using recombinant human (rh) Bri2 BRICHOS-coated magnetic particles, which exhibit essentially identical ability to inhibit Aß42 fibril formation as free rh Bri2 BRICHOS, in combination with proteomic analysis on homogenates of SH-SY5Y cells. We identified 70 proteins that had more significant interactions with rh Bri2 BRICHOS relative to the corresponding control particles. Three previously identified Bri2 BRICHOS interacting proteins were also identified in our 'fishing' experiments. The binding affinity of Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the top 'hit', was calculated and was identified as a strong interacting partner. Enrichment analysis of the retained proteins identified three biological pathways: Rho GTPase, heat stress response and pyruvate, cysteine and methionine metabolism.


Assuntos
Peptídeos beta-Amiloides , Proteínas de Transporte , Proteínas Adaptadoras de Transdução de Sinal , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Fenômenos Magnéticos , Ligação Proteica , Proteômica
5.
Sci Rep ; 10(1): 9817, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555390

RESUMO

Molecular chaperones assist proteins in achieving a functional structure and prevent them from misfolding into aggregates, including disease-associated deposits. The BRICHOS domain from familial dementia associated protein Bri2 (or ITM2B) probably chaperones its specific proprotein region with high ß-sheet propensity during biosynthesis. Recently, Bri2 BRICHOS activity was found to extend to other amyloidogenic, fibril forming peptides, in particular, Alzheimer's disease associated amyloid-ß peptide, as well as to amorphous aggregate forming proteins. However, the biological functions of the central nervous system specific homologue Bri3 BRICHOS are still to be elucidated. Here we give a detailed characterisation of the recombinant human (rh) Bri3 BRICHOS domain and compare its structural and functional properties with rh Bri2 BRICHOS. The results show that rh Bri3 BRICHOS forms more and larger oligomers, somewhat more efficiently prevents non-fibrillar protein aggregation, and less efficiently reduces Aß42 fibril formation compared to rh Bri2 BRICHOS. This suggests that Bri2 and Bri3 BRICHOS have overlapping molecular mechanisms and that their apparently different tissue expression and processing may result in different physiological functions.


Assuntos
Peptídeos beta-Amiloides/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/química , Agregados Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Humanos , Cinética , Modelos Moleculares , Desnaturação Proteica , Domínios Proteicos
6.
J Alzheimers Dis Rep ; 2(1): 27-39, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-30480246

RESUMO

Alzheimer's disease (AD) is the most common form of dementia and there is no successful treatment available. Evidence suggests that fibril formation of the amyloid ß-peptide (Aß) is a major underlying cause of AD, and treatment strategies that reduce the toxic effects of Aß amyloid are sought for. The BRICHOS domain is found in several proteins, including Bri2 (also called integral membrane protein 2B (ITM2B)), mutants of which are associated with amyloid and neurodegeneration, and Bri3 (ITM2C). We have used mouse hippocampal neurons and brain tissues from mice and humans and show Bri3 deposits dispersed on AD plaques. In contrast to what has been shown for Bri2, Bri3 immunoreactivity is decreased in AD brain homogenates compared to controls. Both Bri2 and Bri3 BRICHOS domains interact with Aß40 and Aß42 present in neurons and reduce Aß42 amyloid fibril formation in vitro, but Bri3 BRICHOS is less efficient. These results indicate that Bri2 and Bri3 BRICHOS have different roles in relation to Aß aggregation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...