Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 237: 119986, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37098287

RESUMO

Engineered nanoparticles, including silver nanoparticles (AgNPs), are released into the environment mainly through wastewater treatment systems. Knowledge of the impact of AgNPs on the abundance and removal efficiency of antibiotic resistance genes (ARGs) in wastewater treatment facilities, including constructed wetlands (CWs), is essential in the context of public health. This study evaluated the effect of increased (100-fold) collargol (protein-coated AgNPs) and ionic Ag+ in municipal wastewater on the structure, abundance, and removal efficiency of the antibiotic resistome, integron-integrase genes, and pathogens in a hybrid CW using quantitative PCR and metagenomic approaches. The abundance of ARGs in wastewater and the removal efficiency of ARGs in the hybrid system were significantly affected by higher Ag concentrations, especially with collargol treatment, resulting in an elevated ARG discharge of system effluent into the environment. The accumulated Ag in the filters had a more profound effect on the absolute and relative abundance of ARGs in the treated water than the Ag content in the water. This study recorded significantly enhanced relative abundance values for tetracycline (tetA, tetC, tetQ), sulfonamide (sul1, sul2), and aminoglycoside (aadA) resistance genes, which are frequently found on mobile genetic elements in collargol- and, to a lesser extent, AgNO3-treated subsystems. Elevated plasmid and integron-integrase gene levels, especially intI1, in response to collargol presence indicated the substantial role of AgNPs in promoting horizontal gene transfer in the treatment system. The pathogenic segment of the prokaryotic community was similar to a typical sewage community, and strong correlations between pathogen and ARG proportions were recorded in vertical subsurface flow filters. Furthermore, the proportion of Salmonella enterica was positively related to the Ag content in these filter effluents. The effect of AgNPs on the nature and characteristics of prominent resistance genes carried by mobile genetic elements in CWs requires further investigation.


Assuntos
Nanopartículas Metálicas , Águas Residuárias , Antibacterianos/farmacologia , Antibacterianos/análise , Prata/análise , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Integrases/genética , Eliminação de Resíduos Líquidos/métodos
2.
J Hazard Mater ; 440: 129721, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35963093

RESUMO

Silver nanoparticles (AgNPs) threaten human and ecosystem health, and are among the most widely used engineered nanomaterials that reach wastewater during production, usage, and disposal phases. This study evaluated the effect of a 100-fold increase in collargol (protein-coated AgNP) and Ag+ ions concentrations in municipal wastewater on the microbial community composition of the filter material biofilms (FMB) and the purification efficiency of the hybrid treatment system consisting of vertical (VF) and horizontal (HF) subsurface flow filters. We found that increased amounts of collargol and AgNO3 in wastewater had a modest effect on the prokaryotic community composition in FMB and did not significantly affect the performance of the studied system. Regardless of how Ag was introduced, 99.9% of it was removed by the system. AgNPs and AgNO3 concentrations did not significantly affect the purification efficiency of the system. AgNO3 induced a higher increase in the genetic potential of certain Ag resistance mechanisms in VFs than collargol; however, the increase in Ag resistance potential was similar for both substances in HF. Hence, the microbial community composition in biofilms of vertical and horizontal flow filters is largely resistant, resilient, or functionally redundant in response to AgNPs addition in the form of collargol.


Assuntos
Nanopartículas Metálicas , Microbiota , Purificação da Água , Biofilmes , Humanos , Íons , Prata/análise , Prata/farmacologia , Compostos de Prata , Águas Residuárias
3.
Microorganisms ; 9(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34946026

RESUMO

The development of oil exploration activities and an increase in shipping in Arctic areas have increased the risk of oil spills in this cold marine environment. The objective of this experimental study was to assess the effect of biostimulation on microbial community abundance, structure, dynamics, and metabolic potential for oil hydrocarbon degradation in oil-contaminated Arctic seawater. The combination of amplicon-based and shotgun sequencing, together with the integration of genome-resolved metagenomics and omics data, was applied to assess microbial community structure and metabolic properties in naphthenic crude oil-amended microcosms. The comparison of estimates for oil-degrading microbial taxa obtained with different sequencing and taxonomic assignment methods showed substantial discrepancies between applied methods. Consequently, the data acquired with different methods was integrated for the analysis of microbial community structure, and amended with quantitative PCR, producing a more objective description of microbial community dynamics and evaluation of the effect of biostimulation on particular microbial taxa. Implementing biostimulation of the seawater microbial community with the addition of nutrients resulted in substantially elevated prokaryotic community abundance (103-fold), a distinctly different bacterial community structure from that in the initial seawater, 1.3-fold elevation in the normalized abundance of hydrocarbon degradation genes, and 12% enhancement of crude oil biodegradation. The bacterial communities in biostimulated microcosms after four months of incubation were dominated by Gammaproteobacterial genera Pseudomonas, Marinomonas, and Oleispira, which were succeeded by Cycloclasticus and Paraperlucidibaca after eight months of incubation. The majority of 195 compiled good-quality metagenome-assembled genomes (MAGs) exhibited diverse hydrocarbon degradation gene profiles. The results reveal that biostimulation with nutrients promotes naphthenic oil degradation in Arctic seawater, but this strategy alone might not be sufficient to effectively achieve bioremediation goals within a reasonable timeframe.

4.
Biotechnol Appl Biochem ; 61(1): 23-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23941523

RESUMO

The residues from human environments often contain antibiotics and antibiotic resistance genes (ARGs) that can contaminate natural environments; the clearest consequence of that is the selection of antibiotic-resistant bacteria. The Baltic Sea is the second largest isolated brackish water reservoir on Earth, serving as a drainage area for people in 14 countries, which differ from one another in antibiotic use and sewage treatment policies. The aim of this study was to characterize the bacterioplankton structure and quantify ARGs (tetA, tetB, tetM, ermB, sul1, blaSHV, and ampC) within the bacterioplankton community of the Baltic Sea. Quantitative polymerase chain reaction was applied to quantify ARGs from four different sampling sites of the Baltic Sea over 2 years, and the bacterial communities were profiled sequencing the V6 region of the 16S rRNA gene on Illumina HiSeq2000. The results revealed that all the resistance genes targeted in the study were detectable from the Baltic Sea bacterioplankton. The percentage of tetA, tetB, tetM, ermB, and sul1 genes in the sea bacterial community varied between 0.0077% and 0.1089%, 0.0003% and 0.0019%, 0.0001% and 0.0105%, 0% and 0.0136%, and 0.0001% and 0.0438%, respectively. The most numerous ARG detected was the tetA gene and this gene also had the highest proportion in the whole microbial community. A strong association between bacterioplankton ARGs' abundance data and community phylogenetic composition was found, implying that the abundance of most of the studied ARGs in the Baltic Sea is determined by fluctuations in its bacterial community structure.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Plâncton/microbiologia , Bactérias/efeitos dos fármacos , Oceanos e Mares , RNA Ribossômico 16S/genética
5.
Sci Total Environ ; 461-462: 636-44, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23770545

RESUMO

Municipal wastewater treatment is one of the pathways by which antibiotic resistance genes from anthropogenic sources are introduced into natural ecosystems. This study examined the abundance and proportion dynamics of seven antibiotic resistance genes in the wetland media biofilm and in the influent and effluent of parallel horizontal subsurface flow mesocosm cells of a newly established hybrid constructed wetland treating municipal wastewater. The targeted genes (tetA, tetB, tetM, ermB, sul1, ampC, and qnrS) encode resistance to major antibiotic classes such as tetracyclines, macrolides, sulfonamides, penicillins, and fluoroquinolones, respectively. All targeted antibiotic resistance genes were detectable in the tested mesocosm environments, with the tetA, sul1, and qnrS genes being the most abundant in the mesocosm effluents. After initial fluctuation in the microbial community, target gene abundances and proportions stabilized in the wetland media biofilm. The abundance of 16S rRNA and antibiotic resistance genes, and the proportion of antibiotic resistance genes in the microbial community, were reduced during the wastewater treatment by the constructed wetland. The concentration of antibiotic resistance genes in the system effluent was similar to conventional wastewater treatment facilities; however, the mesocosms reduced sulfonamide resistance encoding sul1 concentrations more effectively than some traditional wastewater treatment options. The concentrations of antibiotic resistance genes in the wetland media biofilm and in effluent were affected by system operation parameters, especially time and temperature. The results also revealed a relationship between antibiotic resistance genes abundance and the removal efficiencies of NO2-N, NH4-N, and organic matter. Correlation analysis between the abundance of individual antibiotic resistance genes in the mesocosms influent, effluent and wetland media biofilm indicated that depending on antibiotic resistance gene type the microbes carrying these genes interact differently with microbial communities already present on the wetland media.


Assuntos
Biofilmes , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos , Áreas Alagadas , Primers do DNA/genética , Estônia , Modelos Lineares , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...