Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36557131

RESUMO

The results of a systematic study on the adsorption of polylysine molecules of different lengths on the surface of a 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS) monolayer in the liquid (LE) and condensed (LC) states are presented. A compressibility diagram and the Volta potential were recorded with the Langmuir monolayer technique and further analyzed with the empirical approach. The structure of the monolayer films with adsorbed polypeptides was studied with synchrotron X-ray reflectometry. Two- and three-layer slab models describe the reflectivity data fairly well and reveal both the significant structural changes and the dehydration of the polar groups induced by all polylysines used at the maximal coverage of the monolayer interface in both the LE and LC states. On the one hand, in the LE phase of the monolayer (area per molecule A ≅ 70 Ǻ2), the integrated electron density of the lipid headgroup region is approximately half the density contained in the clean monolayer. This indicates both significant compaction and dehydration in the polar groups of the lipids, caused by the adsorption of polypeptides. On the other hand, in the LC state (A ≅ 40 Ǻ2), the degree of the hydration of the polar region is similar to that for the initial DMPS monolayer. However, both the electron density and the thickness of the head group region differ significantly from the values of these parameters for the clean monolayer in the LC state.

2.
J Chem Phys ; 130(2): 024512, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19154043

RESUMO

Using synchrotron x-ray reflectivity, I studied the ion-size effect for alkali ions (Na(+), K(+), Rb(+), and Cs(+)), with densities as high as 4x10(18)-7x10(18) m(-2), suspended above the surface of a colloidal solution of silica nanoparticles in the field generated by the surface electric-double layer. I found that large alkali ions preferentially accumulate and replace smaller ones at the surface of the hydrosol, a result qualitatively agreeing with the dependence of the Kharkats-Ulstrup single-ion electrostatic free energy on the ion's radius.

3.
Annu Rev Phys Chem ; 59: 153-77, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17988204

RESUMO

Surfactants have their primary utility, both scientific and industrial, at the liquid-liquid interface. We review recent X-ray surface scattering experiments that probe the molecular ordering and phase behavior of surfactants at the water-oil interface. The presence of the oil modifies the interfacial ordering in a manner that cannot be understood simply from analogies with studies of Langmuir monolayers of surfactants at the water-vapor interface or from the traditional view that the solvent is fully mixed with the interfacial surfactants. These studies explored the role of chain flexibility and head group interactions on the ordering of long-chain alkanols and alkanoic acids. Small changes in the surfactant may produce large changes in the interfacial ordering. The interfacial monolayer can be spatially homogeneous or inhomogeneous. Investigators have observed interfacial phase transitions as a function of temperature between homogenous phases, as well as between homogeneous and inhomogeneous phases. Finally, varying the solvent chain length can alter the fundamental character of the phase transitions and lead to the formation of multilayer interfacial structures.

4.
J Chem Phys ; 126(17): 171102, 2007 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-17492850

RESUMO

The symmetry of the surface of an electrolyte solution can be anisotropic, regardless of the bulk's isotropic symmetry, because of spatial correlations between adsorbed ions. The author used x-ray grazing-incidence diffraction to measure the spatial correlations between sodium ions in "classical one-component plasma" adsorbed with Bjerrum's density at the surface of a monodispersed 22 nm particle colloidal silica solution stabilized by NaOH with a total bulk concentration approximately 0.05 mol/L. The authors findings show that the surface compact layer is in a two-dimensional crystalline state (symmetry p2), with four sodium ions forming the unit cell and a approximately 30 A translational correlation length between the ions.

5.
J Phys Chem B ; 110(39): 19093-6, 2006 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17004752

RESUMO

Interactions between surfactants, and the resultant ordering of surfactant assemblies, can be tuned by the appropriate choice of head- and tailgroups. Detailed studies of the ordering of monolayers of long-chain n-alkanoic and n-alkanol monolayers at the water-vapor interface have demonstrated that rigid-rod all-trans ordering of the tailgroups is maintained upon replacing the alcohol with a carboxylic acid headgroup. In contrast, at the water-hexane liquid-liquid interface, we demonstrate that substitution of the -CH(2)OH with the -COOH headgroup produces a major conformational change of the tailgroup from disordered to ordered. This is demonstrated by the electron density profiles of triacontanol (CH(3)(CH(2))(29)OH) and triacontanoic acid (CH(3)(CH(2))(28)COOH) monolayers at the water-hexane interface, as determined by X-ray reflectivity measurements. Molecular dynamics simulations illustrate the presence of hydrogen bonding between the triacontanoic acid headgroups that is likely responsible for the tail ordering. A simple free energy illustrates the interplay between the attractive hydrogen bonding and the ordering of the tailgroup.

6.
J Chem Phys ; 124(16): 164704, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16674154

RESUMO

The spatial structure of the transition region between an insulator and an electrolyte solution was studied with x-ray scattering. The electron-density profile across the n-hexane/silica sol interface (solutions with 5, 7, and 12 nm colloidal particles) agrees with the theory of the electrical double layer and shows separation of positive and negative charges. The interface consists of three layers, i.e., a compact layer of Na(+), a loose monolayer of nanocolloidal particles as part of a thick diffuse layer, and a low-density layer sandwiched between them. Its structure is described by a model in which the potential gradient at the interface reflects the difference in the potentials of "image forces" between the cationic Na(+) and anionic nanoparticles and the specific adsorption of surface charge. The density of water in the large electric field (approximately 10(9)-10(10) Vm) of the transition region and the layering of silica in the diffuse layer is discussed.

7.
J Phys Chem B ; 110(6): 2746-50, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16471880

RESUMO

I studied the spatial structure of the thick transition region between n-hexane and a colloidal solution of 7-nm silica particles by X-ray reflectivity and grazing incidence small-angle scattering. The interfacial structure is discussed in terms of a semiquantitative interface model wherein the potential gradient at the n-hexane/sol interface reflects the difference in the potentials of "image forces" between the cationic Na(+) and anions (nanoparticles) and the specific adsorption of surface charge at the interface between the adsorbed layer and the solution, as well as at the interface between the adsorbed layer and n-hexane. The X-ray scattering data revealed that the average density of water in the field approximately 10(9)-10(10) V/m of the electrical double layer at the hexane/silica sol interface is the same as, or only few percent higher (1-7%) than, its density under normal conditions.


Assuntos
Eletrólitos/química , Membranas Artificiais , Coloides/química , Condutividade Elétrica , Hexanos/química , Espalhamento a Baixo Ângulo , Dióxido de Silício/química , Soluções/química , Propriedades de Superfície , Água/química , Difração de Raios X
8.
J Phys Chem B ; 109(3): 1210-25, 2005 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16851083

RESUMO

The interface between water and mixed surfactant solutions of CH(3)(CH(2))(19)OH and CF(3)(CF(2))(7)(CH(2))(2)OH in hexane was studied with interfacial tension and X-ray reflectivity measurements. Measurements of the tension as a function of temperature for a range of total bulk surfactant concentrations and for three different values of the molal ratio of fluorinated to total surfactant concentration (0.25, 0.28, and 0.5) determined that the interface can be in three different monolayer phases. The interfacial excess entropy determined for these phases suggests that two of the phases are condensed single surfactant monolayers of CH(3)(CH(2))(19)OH and CF(3)(CF(2))(7)(CH(2))(2)OH. By studying four different compositions as a function of temperature, X-ray reflectivity was used to determine the structure of these monolayers in all three phases at the liquid-liquid interface. The X-ray reflectivity measurements were analyzed with a layer model to determine the electron density and thickness of the headgroup and tailgroup layers. The reflectivity demonstrates that phases 1 and 2 correspond to an interface fully covered by only one of the surfactants (liquid monolayer of CH(3)(CH(2))(19)OH in phase 1 and a solid condensed monolayer of CF(3)(CF(2))(7)(CH(2))(2)OH in phase 2). This was determined by analysis of the electron density profile as well as by direct comparison to reflectivity studies of the liquid-liquid interface in systems containing only one of the surfactants (plus hexane and water). The liquid monolayer of CH(3)(CH(2))(19)OH undergoes a transition to the solid monolayer of CF(3)(CF(2))(7)(CH(2))(2)OH with increasing temperature. Phase 3 and the transition regions between phases 1 and 2 consist of a mixed monolayer at the interface that contains domains of the two surfactants. In phase 3 the interface also contains gaseous regions that occupy progressively more of the interface as the temperature is increased. The reflectivity determined the coverage of the surfactant domains at the interface. A simple model is presented that predicts the basic features of the domain coverage as a function of temperature for the mixed surfactant system from the behavior of the single surfactant systems.

9.
J Chem Phys ; 120(24): 11822-38, 2004 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-15268217

RESUMO

The interface between bulk water and bulk hexane solutions of n-alkanols (H(CH(2))(m)OH, where m=20, 22, 24, or 30) is studied with x-ray reflectivity, x-ray off-specular diffuse scattering, and interfacial tension measurements. The alkanols adsorb to the interface to form a monolayer. The highest density, lowest temperature monolayers contain alkanol molecules with progressive disordering of the chain from the -CH(2)OH to the -CH(3) group. In the terminal half of the chain that includes the -CH(3) group the chain density is similar to that observed in bulk liquid alkanes just above their freezing temperature. The density in the alkanol headgroup region is 10% greater than either bulk water or the ordered headgroup region found in alkanol monolayers at the water-vapor interface. We conjecture that this higher density is a result of water penetration into the headgroup region of the disordered monolayer. A ratio of 1:3 water to alkanol molecules is consistent with our data. We also place an upper limit of one hexane to five or six alkanol molecules mixed into the alkyl chain region of the monolayer. In contrast, H(CH(2))(30)OH at the water-vapor interface forms a close-packed, ordered phase of nearly rigid rods. Interfacial tension measurements as a function of temperature reveal a phase transition at the water-hexane interface with a significant change in interfacial excess entropy. This transition is between a low temperature interface that is nearly fully covered with alkanols to a higher temperature interface with a much lower density of alkanols. The transition for the shorter alkanols appears to be first order whereas the transition for the longer alkanols appears to be weakly first order or second order. The x-ray data are consistent with the presence of monolayer domains at the interface and determine the domain coverage (fraction of interface covered by alkanol domains) as a function of temperature. This temperature dependence is consistent with a theoretical model for a second order phase transition that accounts for the domain stabilization as a balance between line tension and long range dipole forces. Several aspects of our measurements indicate that the presence of domains represents the appearance of a spatially inhomogeneous phase rather than the coexistence of two homogeneous phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...