Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Public Health Res ; 3(1): 218, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25170511

RESUMO

This paper presents a framework for the development of socio-ecological systems towards enhanced sustainability. Emphasis is given to the dynamic properties of complex, adaptive social-ecological systems, their structure and to the fundamental role of agriculture. The tangible components that meet the needs of specific projects executed in Kenya and Ethiopia encompass project objectives, innovation, facilitation, continuous recording and analyses of monitoring data, that allow adaptive management and system navigation. Two case studies deal with system navigation through the mitigation of key constraints; they aim to improve human health thanks to anopheline malaria vectors control in Nyabondo (Kenya), and to improve cattle health through tsetse control and antitrypanosomal drug administration to cattle in Luke (Ethiopia). The second case deals with a socio-ecological navigation system to enhance sustainability, establishing a periurban diversified enterprise in Addis Ababa (Ethiopia) and developing a rural sustainable social-ecological system in Luke (Ethiopia). The project procedures are briefly described here and their outcomes are analysed in relation to the stated objectives. The methodology for human and cattle disease vector control were easier to implement than the navigation of social-ecological systems towards sustainability enhancement. The achievements considerably differed between key constraints removal and sustainability enhancement projects. Some recommendations are made to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability: i) technology system implementation should be carried out through an innovation system; ii) transparent monitoring information should be continuously acquired and evaluated for assessing the state of the system in relation to stated objectives for (a) improving the insight into the systems behaviour and (b) rationalizing decision support; iii) the different views of all stakeholders should be reconciled in a pragmatic approach to social-ecological system management. Significance for public healthRecently, there is a growing interest in studying the link between human, animal and environmental health. The connection between these different dimensions is particularly important for developing countries in which people face the challenge of escaping vicious cycle of high diseases prevalence, food insecurity driven by absolute poverty and population growth, and natural capital as a poverty trap. The design and implementation of such efforts, aiming at human health improvement and poverty alleviation, should be framed into adaptive social-ecological system management perspectives. In this paper, we present few case studies dealing with human health improvement through anopheline malaria vectors control in Kenya, cattle health improvement through tsetse vectored nagana control, antitrypanosomal drug administration to cattle in Ethiopia and with the development of rural sustainable communities in Ethiopia. Some recommendations are given to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability.

2.
Bull Entomol Res ; 100(6): 661-70, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20504383

RESUMO

The paper deals with tsetse (family Glossinidae) control and aims at improving the methodology for precision targeting interventions in an adaptive pest management system. The spatio-temporal distribution of Glossina morsitans submorsitans Newstead, and Glossina pallidipes Austen, at Ethiopia's Keto pilot site, is analyzed with the spatial analysis by distance indices (SADIE) methodology that focus on clustering and spatial associations between species and between sexes. Both species displayed an aggregated distribution characterised by two main patches in the south and an extended gap in the north. Spatial patterns were positively correlated and stable in most cases, with the exception of the early dry season and the short rainy season when there were differences between the species and sexes. For precision targeting interventions, the presented methods here are more effective than the previously used geostatistical analyses for identifying and delimiting hot spots on maps, measuring shapes and sizes of patches, and discarding areas with low tsetse density. Because of the improved knowledge on hot spot occurrences, the methods allow a better delimitation of the territory for control operations and a more precise computation of the number of the relatively expensive traps used for monitoring and control purposes.


Assuntos
Ecossistema , Moscas Tsé-Tsé/fisiologia , Criação de Animais Domésticos/métodos , Animais , Bovinos , Demografia , Etiópia , Feminino , Masculino , Controle de Pragas/métodos , Fatores Sexuais , Fatores de Tempo
3.
J Med Entomol ; 42(6): 1006-19, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16465742

RESUMO

Since 1996, tsetse (Glossina spp.) control operations, using odor-baited traps, have been carried out in the Luke area of Gurage zone, southwestern Ethiopia. Glossina morsitans submorsitans Newstead was identified as the dominant species in the area, but the presence of Glossina fuscipes Newstead and Glossina pallidipes Austen also was recorded. Here, we refer to the combined number of these three species and report the work undertaken from October 2002 to October 2004 to render the control system more efficient by reducing the number of traps used and maintaining the previously reached levels of tsetse occurrence and trypanosomiasis prevalence. This was done by the design and implementation of an adaptive tsetse population management system. It consists first of an efficient community-participatory monitoring scheme that allowed us to reduce the number of traps used from 216 to 127 (107 monitoring traps and 20 control traps). Geostatistical methods, including kriging and mapping, furthermore allowed identification and monitoring of the spatiotemporal dynamics of patches with increased fly densities, referred to as hot spots. To respond to hot spots, the Luke community was advised and assisted in control trap deployment. Adaptive management was shown to be more efficient than the previously used mass trapping system. In that context, trap numbers could be reduced substantially, at the same time maintaining previously achieved levels of tsetse occurrences and disease prevalence.


Assuntos
Controle de Insetos/métodos , Insetos Vetores/fisiologia , Moscas Tsé-Tsé/fisiologia , Animais , Bovinos , Doenças Endêmicas/prevenção & controle , Etiópia , Odorantes , Densidade Demográfica , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma congolense/crescimento & desenvolvimento , Trypanosoma vivax/crescimento & desenvolvimento , Tripanossomíase Africana/prevenção & controle
4.
Cad. saúde pública ; 17(supl): 37-46, 2001. graf
Artigo em Inglês | LILACS | ID: lil-282499

RESUMO

Se presenta un concepto, basado en el ecosistema, para el mejoramiento de la salud humana en la región del Africa al sur del Sahara. Las condiciones físicas del cuerpo humano estan afectadas por tres factores: factores ambientales abióticos, enfermedades transmitidas por vectores, y por los recursos naturales. Este concepto se basa en princípios ecológicos dentro de un contexto social, e identifica tres series de subsistemas para estudio y manejo: subsistemas de enfermedades humanas, subsistemas de recursos naturales y subsistemas participativos de toma de decisiones. En el manejo de enfermedades humanas, así como en el manejo de recursos tales como ganadería o agricultura, se da prioridad a programas preventivos de manejo integrado. El concepto de sostenibilidad ambiental - base para el manejo de materia y de aguas - contribuye a un medio ambiente favorable para las condiciones de vida del ser humano, y es la base de la sostenibilidad social. Para la planificación y la ejecución del esquema de mejoramiento de la salud humana, se necesita un sistema participativo de toma de decisiones, adaptado a las condiciones locales y desarrollado en base a acuerdos institucionales. La aplicabilidad de este esquema es demostrada en la zona rural y urbana de Etiopia.


Assuntos
Artrópodes , Conservação dos Recursos Naturais , Produção de Alimentos , Desenvolvimento Sustentável , Controle de Vetores de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...