Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(15): 7166-7173, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506183

RESUMO

A key aspect of how the brain learns and enables decision-making processes is through synaptic interactions. Electrical transmission and communication in a network of synapses are modulated by extracellular fields generated by ionic chemical gradients. Emulating such spatial interactions in synthetic networks can be of potential use for neuromorphic learning and the hardware implementation of artificial intelligence. Here, we demonstrate that in a network of hydrogen-doped perovskite nickelate devices, electric bias across a single junction can tune the coupling strength between the neighboring cells. Electrical transport measurements and spatially resolved diffraction and nanoprobe X-ray and scanning microwave impedance spectroscopic studies suggest that graded proton distribution in the inhomogeneous medium of hydrogen-doped nickelate film enables this behavior. We further demonstrate signal integration through the coupling of various junctions.

2.
Nano Lett ; 23(1): 73-81, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36576808

RESUMO

Artificially twisted heterostructures of semiconducting transition-metal dichalcogenides (TMDs) offer unprecedented control over their electronic and optical properties via the spatial modulation of interlayer interactions and structural reconstruction. Here we study twisted MoS2 bilayers in a wide range of twist angles near 0° using scanning tunneling microscopy/spectroscopy. We investigate the twist angle dependence of the moiré pattern, which is dominated by lattice reconstruction for small angles (<2°), leading to large triangular domains with rhombohedral stacking. Local spectroscopy measurements reveal a large moiré-potential strength of 100-200 meV for angles <3°. In reconstructed regions, we see a bias-dependent asymmetry between neighboring triangular domains, which we relate to the vertical polarization that is intrinsic to rhombohedral stacked TMDs. This viewpoint is further supported by spectroscopy maps and ambient piezoresponse measurements. Our results provide a microscopic perspective of this new class of interfacial ferroelectrics and can offer clues for designing novel heterostructures that harness this effect.

3.
Nano Lett ; 21(14): 6132-6138, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34231367

RESUMO

The nearly commensurate charge density wave (CDW) excitations native to the transition-metal dichalcogenide crystal, 1T-TaS2, under ambient conditions are revealed by scanning tunneling microscopy (STM) and spectroscopy (STS) measurements of a graphene/TaS2 heterostructure. Surface potential measurements show that the graphene passivation layer prevents oxidation of the air-sensitive 1T-TaS2 surface. The graphene protective layer does not however interfere with probing the native electronic properties of 1T-TaS2 by STM/STS, which revealed that nearly commensurate CDW hosts an array of vortex-like topological defects. We find that these topological defects organize themselves to form a lattice with quasi-long-range order, analogous to the vortex Bragg glass in type-II superconductors but accessible in ambient conditions.

4.
Nat Commun ; 12(1): 4180, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234146

RESUMO

Magic-angle twisted bilayer graphene has emerged as a powerful platform for studying strongly correlated electron physics, owing to its almost dispersionless low-energy bands and the ability to tune the band filling by electrostatic gating. Techniques to control the twist angle between graphene layers have led to rapid experimental progress but improving sample quality is essential for separating the delicate correlated electron physics from disorder effects. Owing to the 2D nature of the system and the relatively low carrier density, the samples are highly susceptible to small doping inhomogeneity which can drastically modify the local potential landscape. This potential disorder is distinct from the twist angle variation which has been studied elsewhere. Here, by using low temperature scanning tunneling spectroscopy and planar tunneling junction measurements, we demonstrate that flat bands in twisted bilayer graphene can amplify small doping inhomogeneity that surprisingly leads to carrier confinement, which in graphene could previously only be realized in the presence of a strong magnetic field.

5.
Nanotechnology ; 26(14): 145601, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25772263

RESUMO

We demonstrate the graphene assisted catalyst free growth of ZnO nanowires (NWs) on chemical vapor deposited (CVD) and chemically processed graphene buffer layers at a relatively low growth temperature (580 °C) in the presence and absence of ZnO seed layers. In the case of CVD graphene covered with rapid thermal annealed ZnO buffer layer, the growth of vertically aligned ZnO NWs takes place, while the direct growth on CVD graphene, chemically derived graphene (graphene oxide and graphene quantum dots) without ZnO seed layer resulted in randomly oriented sparse ZnO NWs. Growth mechanism was studied from high resolution transmission electron microscopy and Raman spectroscopy of the hybrid structure. Further, we demonstrate strong UV, visible photoluminescence (PL) and enhanced photoconductivity (PC) from the CVD graphene-ZnO NWs hybrids as compared to the ZnO NWs grown without the graphene buffer layer. The evolution of crystalinity in ZnO NWs grown with ZnO seed layer and graphene buffer layer is correlated with the Gaussian line shape of UV and visible PL. This is further supported by the strong Raman mode at 438 cm(-1) significant for the wurtzite phase of the ZnO NWs grown on different graphene substrates. The effect of the thickness of ZnO seed layers and the role of graphene buffer layers on the aligned growth of ZnO NWs and its enhanced PC are investigated systematically. Our results demonstrate the catalyst free growth and superior performance of graphene-ZnO NW hybrid UV photodetectors as compared to the bare ZnO NW based photodetectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...