Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Struct Biol ; 16(2): 230-6, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16563740

RESUMO

A remarkable group of proteins challenge the notions that protein sequence determines a unique three-dimensional structure, and that membrane and soluble proteins are very distinct. The pore-forming toxins typically transform from soluble, monomeric proteins to oligomers that form transmembrane channels. Recent structural studies provide ideas about how these changes take place. The recently solved structures of the beta-pore-forming toxins LukS, epsilon-toxin and intermedilysin confirm that the pore-forming regions are initially folded up on the surfaces of the soluble precursors. To create the transmembrane pores, these regions must extend and refold into membrane-inserted beta-barrels.


Assuntos
Toxinas Bacterianas/metabolismo , Citotoxinas/fisiologia , Modelos Moleculares , Toxinas Bacterianas/química , Citotoxinas/química , Bicamadas Lipídicas/química , Conformação Proteica , Dobramento de Proteína
2.
Cell ; 121(2): 247-56, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15851031

RESUMO

The bacterial toxin pneumolysin is released as a soluble monomer that kills target cells by assembling into large oligomeric rings and forming pores in cholesterol-containing membranes. Using cryo-EM and image processing, we have determined the structures of membrane-surface bound (prepore) and inserted-pore oligomer forms, providing a direct observation of the conformational transition into the pore form of a cholesterol-dependent cytolysin. In the pore structure, the domains of the monomer separate and double over into an arch, forming a wall sealing the bilayer around the pore. This transformation is accomplished by substantial refolding of two of the four protein domains along with deformation of the membrane. Extension of protein density into the bilayer supports earlier predictions that the protein inserts beta hairpins into the membrane. With an oligomer size of up to 44 subunits in the pore, this assembly creates a transmembrane channel 260 A in diameter lined by 176 beta strands.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Streptococcus pneumoniae/química , Estreptolisinas/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Membrana Celular/química , Membrana Celular/ultraestrutura , Colesterol/química , Microscopia Crioeletrônica , Lipossomos/química , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
3.
Structure ; 12(2): 317-26, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14962392

RESUMO

Phosphatidylinositol transfer protein alpha (PITPalpha) selectively transports and promotes exchange of phosphatidylinositol (PI) and phosphatidylcholine (PC) between lipid bilayers. In higher eukaryotes PITPalpha is required for cellular functions such as phospholipase C-mediated signaling, regulated exocytosis, and secretory vesicle formation. We have determined the crystal structure of human PITPalpha bound to its physiological ligand, PI, at 2.95 A resolution. The structure identifies the critical side chains within the lipid-headgroup binding pocket that define the exquisite specificity for PI. Mutational analysis of the PI binding pocket is in good agreement with the structural data and allows manipulation of functional properties of PITPalpha. Surprisingly, there are no major conformational differences between PI- and PC-loaded PITPalpha, despite previous predictions. In the crystal, PITPalpha-PI is dimeric, with two identical dimers in the asymmetric unit. The dimer interface masks precisely the sequence we identify as contributing to PITPalpha membrane interaction. Our structure represents a soluble, transport-competent form of PI-loaded PITPalpha.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutação , Fosfatidilinositóis/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Proteínas de Transferência de Fosfolipídeos , Conformação Proteica , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...