Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844663

RESUMO

Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC-plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs.

2.
Langmuir ; 40(19): 10143-10156, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690604

RESUMO

When placed in an ionic surfactant gradient, charged colloids will undergo diffusiophoresis at a velocity, uDP = MDP∇ ln S, where MDP is the diffusiophoretic mobility and S is the surfactant concentration. The diffusiophoretic mobility depends in part on the charges and diffusivities of the surfactants and their counterions. Since micellization decreases surfactant diffusivity and alters charge distributions in a surfactant solution, MDP of charged colloids in ionic surfactant gradients may differ significantly when surfactant concentrations are above or below the critical micelle concentration (CMC). The role of micelles in driving diffusiophoresis is unclear, and a previously published model that accounts for micellization suggests the possibility of a change in the sign of MDP above the CMC [Warren, P. B.; . Soft Matter 2019, 15, 278-288]. In the current study, microfluidic channels were used to measure the transport of negatively charged polystyrene colloids in sodium dodecyl sulfate (SDS) surfactant gradients established at SDS concentrations that are either fully above or fully below the CMC. Interpretation of diffusiophoresis was aided by measurements of the colloid electrophoretic mobility as a function of SDS concentration. A numerical transport model incorporating the prior diffusiophoretic mobility model for ionic surfactant gradients was implemented to elucidate signatures of positive and negative diffusiophoretic mobilities and compare with experiments. The theoretically predicted sign of the diffusiophoretic mobility below the CMC was determined to be particularly sensitive to uncertainty in colloid and surfactant properties, while above the CMC, the mobility was consistently predicted to be positive in the SDS concentration range considered in the experiments conducted here. In contrast, experiments only showed signatures of a negative diffusiophoretic mobility for these negatively charged colloids with no change of sign. Colloid diffusiophoretic transport measured in micellar solutions was more extensive than that below the CMC with the same ∇ ln S.

3.
Environ Sci Technol ; 57(22): 8269-8279, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37227395

RESUMO

An incomplete understanding of how agrochemical nanocarrier properties affect their uptake and translocation in plants limits their application for promoting sustainable agriculture. Herein, we investigated how the nanocarrier aspect ratio and charge affect uptake and translocation in monocot wheat (Triticum aestivum) and dicot tomato (Solanum lycopersicum) after foliar application. Leaf uptake and distribution to plant organs were quantified for polymer nanocarriers with the same diameter (∼10 nm) but different aspect ratios (low (L), medium (M), and high (H), 10-300 nm long) and charges (-50 to +15 mV). In tomato, anionic nanocarrier translocation (20.7 ± 6.7 wt %) was higher than for cationic nanocarriers (13.3 ± 4.1 wt %). In wheat, only anionic nanocarriers were transported (8.7 ± 3.8 wt %). Both low and high aspect ratio polymers translocated in tomato, but the longest nanocarrier did not translocate in wheat, suggesting a phloem transport size cutoff. Differences in translocation correlated with leaf uptake and interactions with mesophyll cells. The positive charge decreases nanocarrier penetration through the leaf epidermis and promotes uptake into mesophyll cells, decreasing apoplastic transport and phloem loading. These results suggest design parameters to provide agrochemical nanocarriers with rapid and complete leaf uptake and an ability to target agrochemicals to specific plant organs, with the potential to lower agrochemical use and the associated environmental impacts.


Assuntos
Agroquímicos , Polímeros , Folhas de Planta , Transporte Biológico , Triticum
4.
J Colloid Interface Sci ; 642: 169-181, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003011

RESUMO

HYPOTHESIS: A concentration gradient of surfactants in the presence of polymers that non-covalently associate with surfactants will exhibit a continually varying distribution of complexes with different composition, charge, and size. Since diffusiophoresis of colloids suspended in a solute concentration gradient depends on the relaxation of the gradient and on the interactions between solutes and particles, polymer/surfactant complexation will alter the rate of diffusiophoresis driven by surfactant gradients relative to that observed in the same concentration gradient in the absence of polymers. EXPERIMENTS: A microfluidic device was used to measure diffusiophoresis of colloids suspended in solutions containing a gradient of sodium dodecylsulfate (SDS) in the presence or absence of a uniform concentration of Pluronic P123 poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) nonionic triblock copolymers. To interpret the effect of P123 on the rate of colloid diffusiophoresis, electrophoretic mobility and dynamic light scattering measurements of the colloid/solute systems were performed, and a numerical model was constructed to account for the effects of complexation on diffusiophoresis. FINDINGS: Polymer/surfactant complexation in solute gradients significantly enhanced diffusiophoretic transport of colloids. Large P123/SDS complexes formed at low SDS concentrations yielded low collective solute diffusion coefficients that prolonged the existence of strong concentration gradients relative to those without P123 to drive diffusiophoresis.

5.
ACS Sustain Chem Eng ; 11(8): 3346-3358, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36874196

RESUMO

Anticipated increases in the frequency and intensity of extreme temperatures will damage crops. Methods that efficiently deliver stress-regulating agents to crops can mitigate these effects. Here, we describe high aspect ratio polymer bottlebrushes for temperature-controlled agent delivery in plants. The foliar-applied bottlebrush polymers had near complete uptake into the leaf and resided in both the apoplastic regions of the leaf mesophyll and in cells surrounding the vasculature. Elevated temperature enhanced the in vivo release of spermidine (a stress-regulating agent) from the bottlebrushes, promoting tomato plant (Solanum lycopersicum) photosynthesis under heat and light stress. The bottlebrushes continued to provide protection against heat stress for at least 15 days after foliar application, whereas free spermidine did not. About 30% of the ∼80 nm short and ∼300 nm long bottlebrushes entered the phloem and moved to other plant organs, enabling heat-activated release of plant protection agents in phloem. These results indicate the ability of the polymer bottlebrushes to release encapsulated stress relief agents when triggered by heat to provide long-term protection to plants and the potential to manage plant phloem pathogens. Overall, this temperature-responsive delivery platform provides a new tool for protecting plants against climate-induced damage and yield loss.

6.
J Colloid Interface Sci ; 623: 685-696, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35605450

RESUMO

HYPOTHESIS: Marangoni spreading driven by localized surfactant solution deposition previously has been studied only for single surfactant systems. For binary surfactant mixtures, interactions that generate surface tension synergism, a thermodynamic effect, may also synergistically enhance Marangoni spreading dynamics, introducing the concept of Marangoni synergism. Spreading dynamics and possible Marangoni synergism should depend not only on thermodynamic properties but also kinetic properties of the binary system. EXPERIMENTS AND MODELING: Tracer experiments that capture post-deposition surfactant front motion were performed in parallel with computational modeling, using binary surfactant pairs with varying interaction strengths. The model coupled the Navier-Stokes and advective diffusion equations with a Frumkin-type binary adsorption model. FINDINGS: We confirm the existence of Marangoni synergism. Stronger binary surfactant attraction favors synergism in both surface tension reduction and Marangoni spreading. Binary composition ranges over which surface tension synergism occurs differ from those for Marangoni synergism, indicating that the origins of the two synergistic effects are not identical. Analysis of model spreading velocities show that the thermodynamic spreading parameter is the controlling factor at early times for both single and binary surfactant systems, while the intrinsic adsorption and desorption kinetics influence spreading velocities and thus the occurrence of Marangoni synergism at later times.


Assuntos
Surfactantes Pulmonares , Tensoativos , Adsorção , Excipientes , Tensão Superficial
7.
J Colloid Interface Sci ; 614: 511-521, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35121509

RESUMO

HYPOTHESIS: Surfactant-driven Marangoni spreading generates a fluid flow characterized by an outwardly moving "Marangoni ridge". Spreading on thin and/or high viscosity subphases, as most of the prior literature emphasizes, does not allow the formation of capillary waves. On deep, low viscosity subphases, Marangoni stresses may launch capillary waves coupled with the Marangoni ridge, and new dependencies emerge for key spreading characteristics on surfactant thermodynamic and kinetic properties. EXPERIMENTS AND MODELING: Computational and physical experiments were performed using a broad range of surfactants to report the post-deposition motion of the surfactant front and the deformation of the subphase surface. Modeling coupled the Navier-Stokes and advective diffusion equations with an adsorption model. Separate experiments employed tracer particles or an optical density method to track surfactant front motion or surface deformation, respectively. FINDINGS: Marangoni stresses on thick subphases induce capillary waves, the slowest of which is co-mingled with the Marangoni ridge. Changing Marangoni stresses by varying the surfactant system alters the surfactant front velocity and the amplitude - but not the velocity - of the slowest capillary wave. As spreading progresses, the surfactant front and its associated surface deformation separate from the slowest moving capillary wave.


Assuntos
Surfactantes Pulmonares , Tensoativos , Adsorção , Difusão , Excipientes
8.
ACS Nano ; 16(3): 4467-4478, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35179875

RESUMO

Plant abiotic stress induces reactive oxygen species (ROS) accumulation in leaves that can decrease photosynthetic performance and crop yield. Materials that scavenge ROS and simultaneously provide nutrients in vivo are needed to manage this stress. Here, we incorporated both ROS scavenging and ROS triggered agent release functionality into an ∼20 nm ROS responsive star polymer (RSP) poly(acrylic acid)-block-poly((2-(methylsulfinyl)ethyl acrylate)-co-(2-(methylthio)ethyl acrylate)) (PAA-b-P(MSEA-co-MTEA)) that alleviated plant stress by simultaneous ROS scavenging and nutrient agent release. Hyperspectral imaging indicates that all of the RSP penetrates through the tomato leaf epidermis, and 32.7% of the applied RSP associates with chloroplasts in mesophyll. RSP scavenged up to 10 µmol mg-1 ROS in vitro and suppressed ROS in vivo in stressed tomato (Solanum lycopersicum) leaves. Reaction of the RSP with H2O2in vitro enhanced the release of nutrient agent (Mg2+) from star polymers. Foliar applied RSP increased photosynthesis in plants under heat and light stress compared to untreated controls, enhancing the carbon assimilation, quantum yield of CO2 assimilation, Rubisco carboxylation rate, and photosystem II quantum yield. Mg loaded RSP improved photosynthesis in Mg deficient plants, mainly by promoting Rubisco activity. These results indicate the potential of ROS scavenging nanocarriers like RSP to alleviate abiotic stress in crop plants, allowing crop plants to be more resilient to heat stress, and potentially other climate change induced abiotic stressors.


Assuntos
Polímeros , Solanum lycopersicum , Peróxido de Hidrogênio , Fotossíntese , Folhas de Planta , Espécies Reativas de Oxigênio , Ribulose-Bifosfato Carboxilase
9.
Soft Matter ; 18(9): 1896-1910, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35188176

RESUMO

The transport of microorganisms by chemotaxis is described by the same "log-sensing" response as colloids undergoing diffusiophoresis, despite their different mechanistic origins. We employ a recently-developed macrotransport theory to analyze the advective-diffusive transport of a chemotactic or diffusiophoretic colloidal species (both referred to as "colloids") in a circular tube under a steady pressure-driven flow (referred to as hydrodynamic flow) and transient solute gradient. First, we derive an exact solution to the log-sensing chemotactic/diffusiophoretic macrotransport equation. We demonstrate that a strong hydrodynamic flow can reduce spreading of solute-repelled colloids, by eliminating super-diffusion which occurs in an otherwise quiescent system. In contrast, hydrodynamic flows always enhance spreading of solute-attracted colloids. Second, we generalize the exact solution to show that the above tunable spreading phenomena by hydrodynamic flows persist quantitatively for decaying colloids, as may occur with cell death, for example. Third, we examine the spreading of chemotactic colloids by employing a more general model that captures a hallmark of chemotaxis, that log-sensing occurs only over a finite range of solute concentration. Apart from demonstrating for the first time the generality of the macrotransport theory to incorporate an arbitrary chemotactic flow model, we reveal via numerical solutions new regimes of anomalous spreading, which match qualitatively with experiments and are tunable by hydrodynamic flows. The results presented here could be employed to tailor chemotactic/diffusiophoretic colloid transport using hydrodynamic flows, which are central to applications such as oil recovery and bioremediation of aquifers.

10.
J Aerosol Med Pulm Drug Deliv ; 35(3): 146-153, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34647795

RESUMO

Background: Inhaled drug delivery can be limited by heterogeneous dose distribution. An additive that would disperse drug over the internal surfaces of the lung after aerosol deposition could improve dosing uniformity and increase the treated area. Our previous studies demonstrated that surfactant additives can produce surface tension-driven (Marangoni) flows that effectively dispersed aerosol-delivered drugs over mucus surfaces. Here we sought to determine whether the addition of a surfactant would increase transport of an aerosol between lung regions and also improve dosing uniformity in human lungs. Methods: We compared the deposition and postdeposition dispersion of surfactant (10 mg/mL dipalmitoylphosphatidylcholine; DPPC) and saline-based liquid aerosols, admixed with Technetium 99m (Tc99m) diethylenetriaminepentaacetic acid, using gamma scintigraphy. Deposition images were obtained ex vivo in eight pairs of ventilated human lungs. The trachea was intubated and the mainstem bronchi were alternately clamped so that saline was delivered to one lung and then DPPC to the other (sides alternated). The lungs were continually imaged for 15 minutes during delivery. We assessed transport of the deposited aerosol by quantifying the percentage of Tc99m in each of four lung quadrants over time. We quantified dose uniformity within each lung quadrant by measuring the coefficient of variation (CV = standard deviation of the pixel associated radioactive counts/mean of the counts within each quadrant). Results: There was no change in the percentage of Tc99m in each quadrant over time, indicating no improvement in transport with the addition of the surfactant. The addition of surfactant was associated with a statistically significant decrease in CV in the lower inner lung quadrant at each of the three time points, indicating an improvement in dosing uniformity. Conclusion: These preliminary results indicate the possible utility of adding surfactant to aerosols to improve drug distribution uniformity to lower inner lung regions.


Assuntos
Surfactantes Pulmonares , Tensoativos , Administração por Inalação , Aerossóis , Excipientes , Humanos , Pulmão , Nebulizadores e Vaporizadores , Pentetato de Tecnécio Tc 99m
11.
Langmuir ; 37(39): 11573-11581, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34554763

RESUMO

While the concept of interfacial tension synergism in surfactant mixtures is well established, little attention has been paid to the possibility of synergistic effects on the interfacial rheology of mixed surfactant systems. Furthermore, interfacial tension synergism is most often investigated for mixtures of surfactants residing in a single phase. Here, we define dilatational modulus synergism and report a study of interfacial tension isotherms and complex dilatational moduli for a binary surfactant system with the two surfactants accessing the oil/water interface from opposite sides. Using an oil-soluble fatty acid surfactant (palmitic acid, PA) that may be ionized at the oil/water interface and a quaternary ammonium water-soluble cationic surfactant (tetradecyltrimethylammonium bromide, TTAB), the binary interfacial interaction was tuned by the aqueous phase pH. Interfacial tensions and dilatational moduli were measured by the pendant drop method for the binary surfactant system as well as the corresponding single-surfactant systems to identify synergistic effects. The possible occurrence of dilatational modulus synergism was probed from two perspectives: one for a fixed total surfactant concentration and the other for a fixed interfacial tension. The aqueous pH was found to have a controlling effect on both interfacial tension synergism and the dilatational modulus synergism. The conditions for interfacial tension synergism coincided with those for the storage modulus synergism: both tension and storage modulus synergisms were observed under all conditions tested at pH 7 where PA was mostly deprotonated, for both perspectives examined, but not for any conditions tested at pH 3 where PA is mostly protonated. The loss modulus synergism exhibited more complex behaviors, such as frequency and interfacial tension dependences, but again was only observed at pH 7. The tension and modulus synergism at pH 7 were attributed to the increased attraction between ionized PA and cationic TTAB and the formation of catanionic complexes at the oil/water interface.


Assuntos
Ácidos Graxos , Água , Adsorção , Concentração de Íons de Hidrogênio , Tensão Superficial , Tensoativos
12.
Environ Sci Technol ; 55(18): 12549-12560, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34464106

RESUMO

Demand for rare earth elements (REEs) is increasing, and REE production from ores is energy-intensive. Recovering REEs from waste streams can provide a more sustainable approach to help meet REE demand but requires materials with high selectivity and capacity for REEs due to the low concentration of REEs and high competing ion concentrations. Here, we developed a phosphate polymer nanogel (PPN) to selectively recover REEs from low REE content waste streams, including leached fly ash. A high phosphorus content (16.2 wt % P as phosphate groups) in the PPN provides an abundance of coordination sites for REE binding. In model solutions, the distribution coefficient (Kd) for all REEs ranged from 1.3 × 105 to 3.1 × 105 mL g-1 at pH = 7, and the sorption capacity (qm) for Nd, Gd, and Ho were ∼300 mg g-1. The PPN was selective toward REEs, outcompeting cations (Ca, Mg, Fe, Al) at up to 1000-fold excess concentration. The PPN had a Kd of ∼105-106 mL g-1 for lanthanides in coal fly ash leachate (pH = 5), orders of magnitude higher than the Kd of major competing ions (∼103-104 mL g-1). REEs were recovered from the PPN using 3.5% HNO3, and the material remained effective over three sorption-elution cycles. The high REE capacity and selectivity and good durability in a real waste stream matrix suggest its potential to recover REEs from a broad range of secondary REE stocks.


Assuntos
Elementos da Série dos Lantanídeos , Metais Terras Raras , Nanogéis , Fosfatos , Polímeros
13.
Environ Sci Technol ; 55(15): 10758-10768, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34283571

RESUMO

Determination of how the properties of nanocarriers of agrochemicals affect their uptake and translocation in plants would enable more efficient agent delivery. Here, we synthesized star polymer nanocarriers poly(acrylic acid)-block-poly(2-(methylsulfinyl)ethyl acrylate) (PAA-b-PMSEA) and poly(acrylic acid)-block-poly((2-(methylsulfinyl)ethyl acrylate)-co-(2-(methylthio)ethyl acrylate)) (PAA-b-P(MSEA-co-MTEA)) with well-controlled sizes (from 6 to 35 nm), negative charge content (from 17% to 83% PAA), and hydrophobicity and quantified their leaf uptake, phloem loading, and distribution in tomato (Solanum lycopersicum) plants 3 days after foliar application of 20 µL of a 1g L-1 star polymer solution. In spite of their property differences, ∼30% of the applied star polymers translocated to other plant organs, higher than uptake of conventional foliar applied agrochemicals (<5%). The property differences affected their distribution in the plant. The ∼6 nm star polymers exhibited 3 times higher transport to younger leaves than larger ones, while the ∼35 nm star polymer had over 2 times higher transport to roots than smaller ones, suggesting small star polymers favor symplastic unloading in young leaves, while larger polymers favor apoplastic unloading in roots. For the same sized star polymer, a smaller negative charge content (yielding ζ ∼ -12 mV) enhanced translocation to young leaves and roots, whereas a larger negative charge (ζ < -26 mV) had lower mobility. Hydrophobicity only affected leaf uptake pathways, but not translocation. This study can help design agrochemical nanocarriers for efficient foliar uptake and targeting to desired plant organs, which may decrease agrochemical use and environmental impacts of agriculture.


Assuntos
Folhas de Planta , Polímeros , Transporte Biológico , Interações Hidrofóbicas e Hidrofílicas , Raízes de Plantas
14.
Langmuir ; 37(11): 3309-3320, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33689367

RESUMO

When an insoluble surfactant is deposited on the surface of a thin fluid film, stresses induced by surface tension gradients drive Marangoni spreading across the subphase surface. The presence of a predeposited layer of an insoluble surfactant alters that spreading. In this study, the fluid film was aqueous, the predeposited insoluble surfactant was dipalmitoylphosphatidylcholine (DPPC), and the deposited insoluble surfactant was oleic acid. An optical density-based method was used to measure subphase surface distortion, called the Marangoni ridge, associated with propagation of the spreading front. The movement of the Marangoni ridge was correlated with movement of surface tracer particles that indicated both the boundary between the two surfactant layers and the surface fluid velocities. As the deposited oleic acid monolayer spread, it compressed the predeposited DPPC monolayer. During spreading, the surface tension gradient extended into the predeposited monolayer, which was compressed nonuniformly, from the deposited monolayer. The spreading was so rapid that the compressed predeposited surfactant could not have been in quasi-equilibrium states during the spreading. As the initial concentrations of the predeposited surfactant were increased, the shape of the Marangoni ridge deformed. When the initial concentration of the predeposited surfactant reached about 70 A2/molecule, there was no longer a Marangoni ridge but rather a broadly distributed excess of fluid above the initial fluid height. The nonuniform compression of the annulus of the predeposited monolayer also caused tangential motion ahead of both the Marangoni ridge and the boundary between the two monolayers. Spreading ceased when the two monolayers reached the same final surface tension. The final area per molecule of the DPPC monolayer matched that expected from the equilibrium DPPC isotherm at the same final surface tension. Thus, at the end of spreading, there was a simple surface tension balance between the two distinct monolayers.

15.
Environ Sci Technol ; 55(2): 1231-1241, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33404237

RESUMO

Technologies for removal of mercury from produced water and hydrocarbon phases are desired by oil and gas production facilities, oil refineries, and petrochemical plants. Herein, we synthesize and demonstrate the efficacy of an amphiphilic, thiol-abundant (11.8 wt % S, as thiol) polymer nanogel that can remove environmentally relevant mercury species from both produced water and the liquid hydrocarbon. The nanogel disperses in both aqueous and hydrocarbon phases. It has a high sorption affinity for dissolved Hg(II) complexes and Hg-dissolved organic matter complexes found in produced water and elemental (Hg0) and soluble Hg-alkyl thiol species found in hydrocarbons. X-ray absorption spectroscopy analysis indicates that the sorbed mercury is transformed to a surface-bound Hg(SR)2 species in both water and hydrocarbon regardless of its initial speciation. The nanogel had high affinity to native mercury species present in real produced water (>99.5% removal) and in natural gas condensate (>85% removal) samples, removing majority of the mercury species using only a 50 mg L-1 applied dose. This thiolated amphiphilic polymeric nanogel has significant potential to remove environmentally relevant mercury species from both water and hydrocarbon at low applied doses, outperforming reported sorbents like sulfur-impregnated activated carbons because of the mass of accessible thiol groups in the nanogel.


Assuntos
Mercúrio , Hidrocarbonetos , Nanogéis , Polímeros , Compostos de Sulfidrila , Água
16.
J Colloid Interface Sci ; 581(Pt A): 135-147, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32771725

RESUMO

HYPOTHESIS: Molecular architecture and composition of amphiphilic bottlebrush copolymers will dictate the dominant interfacial relaxation modes and the corresponding dilatational rheology for adsorbed layers at oil/water interfaces in a way that will correlate with the emulsifying efficiency of different bottlebrush copolymers. EXPERIMENTS: Amphiphilic, xylene-soluble poly(ethylene oxide)-poly(n-butyl acrylate) (PEO-PBA) heterografted bottlebrush copolymers with controlled differences in backbone length, hydrophilicity and arm length were synthesized by atom transfer radical polymerization. Dilatational rheology of adsorbed layers at the xylene/water interface was probed via pendant drop tensiometry by measuring the interfacial stress response to either large-amplitude strain cycling or small-amplitude strain oscillation. The rheological response was recorded as a function of interfacial pressure for adsorbed layers under different compression states. Emulsifying efficiency was determined as the lowest copolymer concentration that yielded water-in-xylene emulsions with at least one-month stability against coalescence. FINDINGS: The more hydrophilic copolymers with longer PEO arms exhibited non-hysteretic stress-strain response curves in large-amplitude strain cycling and a tendency for the modulus to increase with increasing interfacial pressure. These were more efficient emulsifiers than less hydrophilic copolymers that exhibited hysteretic interfacial rheology. Mere existence of significant moduli did not correlate with high emulsifying efficiency, while an increase in modulus with increasing interfacial pressure did so.

17.
Langmuir ; 36(36): 10772-10784, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32830506

RESUMO

Depletion forces were measured between a silica sphere and a silica plate in solutions containing nonionic Pluronic P123 poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymers and anionic sodium dodecyl sulfate (SDS) surfactants using colloidal probe atomic force microscopy. Prior research established synergistic depletion force enhancement in solutions containing SDS and unimeric Pluronic F108 block copolymers via formation of large pseudo-polyelectrolyte complexes. The current work addresses a more complex system where the polymer is above its critical micelle concentration, and surfactant binding alters not only the size and charge of the micelles but also the number of polymers per micelle. Force profiles were measured in 10 000 ppm P123 (1 wt %, corresponding to 1.72 mM based on average molar mass) solutions containing SDS at concentrations up to 64 mM and compared to micellar P123 solutions and to P123-free SDS solutions. Whereas force profiles in the SDS-free micellar P123 solutions were purely repulsive, P123/SDS complexation produced synergistic depletion force enhancement for SDS concentrations between 2 and 32 mM. The synergism that occurred within a finite SDS concentration range was explained by comparing the hydrodynamic size, molar mass, charge, and concentration of depletants in P123/SDS mixtures and their respective single-component solutions obtained with the aid of dynamic light scattering, static light scattering, and dodecyl sulfate ion-selective electrode measurements. These measurements showed that complexation produced effects that would be mutually counteracting with respect to depletion forces: decreasing the mixed micelle hydrodynamic diameter relative to SDS-free P123 micelles would tend to weaken depletion forces, while adding charge and decreasing the aggregation number of polymers per micelle (thereby increasing the number concentration of micellar depletants) would tend to strengthen depletion forces.

18.
ACS Nano ; 14(9): 10954-10965, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32628009

RESUMO

Climate change is increasing the severity and length of heat waves. Heat stress limits crop productivity and can make plants more sensitive to other biotic and abiotic stresses. New methods for managing heat stress are needed. Herein, we have developed ∼30 nm diameter poly(acrylic acid)-block-poly(N-isopropylacrylamide) (PAA-b-PNIPAm) star polymers with varying block ratios for temperature-programmed release of a model antimicrobial agent (crystal violet, CV) at plant-relevant pH. Hyperspectral-Enhanced Dark field Microscopy was used to investigate star polymer-leaf interactions and route of entrance. The majority of loaded star polymers entered plant leaves through cuticular and epidermis penetration when applied with the adjuvant Silwet L-77. Up to 43 wt % of star polymers (20 µL at 200 mg L-1 polymer concentration) applied onto tomato (Solanum lycopersicum) leaves translocated to other plant compartments (younger and older shoots, stem, and root) over 3 days. Without Silwet L-77, the star polymers penetrated the cuticle, but mainly accumulated at the epidermis cell layer. The degree of the star polymer temperature responsiveness for CV release in vitro in the range of 20 to 40 °C depends on pH and the ratio of the PAA to PNIPAm blocks. Temperature-responsive release of CV was also observed in vivo in tomato leaves. These results underline the potential for PAA-b-PNIPAm star polymers to provide efficient and temperature-programmed delivery of cationic agrochemicals into plants for protection against heat stress.


Assuntos
Agroquímicos , Polímeros , Concentração de Íons de Hidrogênio , Temperatura
19.
Soft Matter ; 16(1): 238-246, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31777903

RESUMO

We analytically calculate the one-dimensional advective-diffusive spreading of a point source of diffusiophoretic (DP) colloids, driven by the simultaneous diffusion of a Gaussian solute patch. The spreading of the DP colloids depends critically on the ratio of the DP mobility, M (which can be positive or negative), to the solute diffusivity, Ds. For instance, we demonstrate, for the first time, that solute-repelling colloids (M < 0) undergo long-time super-diffusive transport for M/Ds < -1. In contrast, the spreading of strongly solute-attracting colloids (M/Ds≫ 1) can be spatially arrested over long periods on the solute diffusion timescale, due to a balance between colloid diffusion and DP under the evolving solute gradient. Further, a patch of the translating solute acts as a "shuttle" that rapidly transports the colloids relative to their diffusive timescale. Finally, we use numerical computations to show that the above behaviors persist for three-dimensional, radially symmetric DP spreading. The results presented here could guide the use of DP colloids for microscale particle sorting, deposition, and delivery.

20.
Langmuir ; 35(48): 15937-15947, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31446760

RESUMO

Depletion and structural forces were measured between a silica sphere and plate in solutions containing sodium polyacrylate (Na-PAA) anionic polyelectrolyte and sodium dodecyl sulfate (SDS) anionic surfactant using colloidal probe atomic force microscopy, at high pH where the two species are electrostatically repelling from each other and from the silica surfaces. Measurements were performed for a range of SDS and Na-PAA concentrations to span conditions where only one of the species or both of the species would exert a detectable depletion or structural force when present in a single-component solution. In mixed solutions, conditions were identified (i) where depletion attraction was synergistically enhanced or antagonistically weakened relative to single component solutions; (ii) where the range of the depletion attraction was significantly extended and the repulsive structural force barrier was eliminated, due to simultaneous depletion of both species over different length scales; and (iii) where one species was the dominant depletant and forces in mixtures were indistinguishable from those in a single component solution of the dominant depletant. Force measurements were interpreted with the aid of pyrene solubilization assays of SDS micellization and dynamic light scattering investigation of the state of assembly of the polyelectrolyte or surfactant. The variety of colloidal force effects were attributed to ionic strength and excluded volume effects of Na-PAA on SDS micellization, ionic strength effects of SDS on Na-PAA chain clustering in solution, and ionic strength effects on the counterion contribution to polyelectrolyte osmotic pressure. While prior studies have shown that depletion force synergism occurs when polymers and surfactants form mixed complexes, this work shows that it can occur in noncomplexing mixtures as well, and it indicates the variety of effects that should be taken into account when attempting to predict forces in such mixtures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...