Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Neurol ; 22(1): 114, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331168

RESUMO

BACKGROUND: Dementia with Lewy bodies (DLB) is the second most common dementia type in patients older than 65 years. Its atrophy patterns remain unknown. Its similarities to Parkinson's disease and differences from Alzheimer's disease are subjects of current research. METHODS: The aim of our study was (i) to form a group of patients with DLB (and a control group) and create a 3D MRI data set (ii) to volumetrically analyze the entire brain in these groups, (iii) to evaluate visual and manual metric measurements of the innominate substance for real-time diagnosis, and (iv) to compare our groups and results with the latest literature. We identified 102 patients with diagnosed DLB in our psychiatric and neurophysiological archives. After exclusion, 63 patients with valid 3D data sets remained. We compared them with a control group of 25 patients of equal age and sex distribution. We evaluated the atrophy patterns in both (1) manually and (2) via Fast Surfers segmentation and volumetric calculations. Subgroup analyses were done of the CSF data and quality of 3D T1 data sets. RESULTS: Concordant with the literature, we detected moderate, symmetric atrophy of the hippocampus, entorhinal cortex and amygdala, as well as asymmetric atrophy of the right parahippocampal gyrus in DLB. The caudate nucleus was unaffected in patients with DLB, while all the other measured territories were slightly too moderately atrophied. The area under the curve analysis of the left hippocampus volume ratio (< 3646mm3) revealed optimal 76% sensitivity and 100% specificity (followed by the right hippocampus and left amygdala). The substantia innominata's visual score attained a 51% optimal sensitivity and 84% specificity, and the measured distance 51% optimal sensitivity and 68% specificity in differentiating DLB from our control group. CONCLUSIONS: In contrast to other studies, we observed a caudate nucleus sparing atrophy of the whole brain in patients with DLB. As the caudate nucleus is known to be the last survivor in dopamine-uptake, this could be the result of an overstimulation or compensation mechanism deserving further investigation. Its relative hypertrophy compared to all other brain regions could enable an imaging based identification of patients with DLB via automated segmentation and combined volumetric analysis of the hippocampus and amygdala.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Alzheimer/patologia , Atrofia/patologia , Hipocampo/patologia , Humanos , Doença por Corpos de Lewy/diagnóstico , Imageamento por Ressonância Magnética/métodos
2.
World J Stem Cells ; 6(2): 248-55, 2014 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-24772251

RESUMO

AIM: To find a safe source for dopaminergic neurons, we generated neural progenitor cell lines from human embryonic stem cells. METHODS: The human embryonic stem (hES) cell line H9 was used to generate human neural progenitor (HNP) cell lines. The resulting HNP cell lines were differentiated into dopaminergic neurons and analyzed by quantitative real-time polymerase chain reaction and immunofluorescence for the expression of neuronal differentiation markers, including beta-III tubulin (TUJ1) and tyrosine hydroxylase (TH). To assess the risk of teratoma or other tumor formation, HNP cell lines and mouse neuronal progenitor (MNP) cell lines were injected subcutaneously into immunodeficient SCID/beige mice. RESULTS: We developed a fairly simple and fast protocol to obtain HNP cell lines from hES cells. These cell lines, which can be stored in liquid nitrogen for several years, have the potential to differentiate in vitro into dopaminergic neurons. Following day 30 of differentiation culture, the majority of the cells analyzed expressed the neuronal marker TUJ1 and a high proportion of these cells were positive for TH, indicating differentiation into dopaminergic neurons. In contrast to H9 ES cells, the HNP cell lines did not form tumors in immunodeficient SCID/beige mice within 6 mo after subcutaneous injection. Similarly, no tumors developed after injection of MNP cells. Notably, mouse ES cells or neuronal cells directly differentiated from mouse ES cells formed teratomas in more than 90% of the recipients. CONCLUSION: Our findings indicate that neural progenitor cell lines can differentiate into dopaminergic neurons and bear no risk of generating teratomas or other tumors in immunodeficient mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...