Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-449893

RESUMO

A dysregulated immune response with high levels of SARS-CoV-2 specific IgG antibodies characterizes patients with severe or critical COVID-19. Although a robust IgG response is traditionally considered to be protective, excessive triggering of activating Fc-gamma-receptors (Fc{gamma}Rs) could be detrimental and cause immunopathology. Here, we document that patients who develop soluble circulating IgG immune complexes (sICs) during infection are subject to enhanced immunopathology driven by Fc{gamma}R activation. Utilizing cell-based reporter systems we provide evidence that sICs are predominantly formed prior to a specific humoral response against SARS-CoV-2. sIC formation, together with increased afucosylation of SARS-CoV-2 specific IgG eventually leads to an enhanced CD16 (Fc{gamma}RIII) activation of immune cells reaching activation levels comparable active systemic lupus erythematosus (SLE) disease. Our data suggest a vicious cycle of escalating immunopathology driven by an early formation of sICs in predisposed patients. These findings reconcile the seemingly paradoxical findings of high antiviral IgG responses and systemic immune dysregulation in severe COVID-19. Clinical implicationsThe identification of sICs as drivers of an escalating immunopathology in predisposed patients opens new avenues regarding intervention strategies to alleviate critical COVID-19 progression. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=78 SRC="FIGDIR/small/449893v4_ufig1.gif" ALT="Figure 1"> View larger version (17K): org.highwire.dtl.DTLVardef@b4616corg.highwire.dtl.DTLVardef@682d1aorg.highwire.dtl.DTLVardef@16946cborg.highwire.dtl.DTLVardef@a6ef7d_HPS_FORMAT_FIGEXP M_FIG C_FIG A vicious cycle of immunopathology in COVID-19 patients is driven by soluble multimeric immune complexes (sICs). SARS-CoV-2 infection triggers sIC formation in prone individuals. Activation of Fc{gamma}RIII/CD16 expressing immune cells by sICs precedes a humoral response to SARS-CoV2 infection. sICs and infection add to IgG afucosylation, further enhancing Fc{gamma}RIII/CD16 activation by opsonized targets. High inflammation induces further sIC mediated immune cell activation ultimately leading to an escalating immunopathology.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-432424

RESUMO

As the SARS-CoV-2 pandemic is still ongoing and dramatically influences our life, the need for recombinant proteins for diagnostics, vaccine development, and research is very high. The spike (S) protein, and particularly its receptor binding domain (RBD), mediates the interaction with the ACE2 receptor on host cells and may be modulated by its structural features. Therefore, well characterized recombinant RBDs are essential. We have performed an in-depth structural and functional characterization of RBDs expressed in Chinese hamster ovary (CHO) and human embryonic kidney (HEK293) cells. To structurally characterize the native RBDs (comprising N- and O-glycans and additional posttranslational modifications) a multilevel mass spectrometric approach was employed. Released glycan and glycopeptide analysis were integrated with intact mass analysis, glycan-enzymatic dissection and top-down sequencing for comprehensive annotation of RBD proteoforms. The data showed distinct glycosylation for CHO- and HEK293-RBD with the latter exhibiting antenna fucosylation, higher level of sialylation and a combination of core 1 and core 2 type O-glycans. Additionally, from both putative O-glycosylation sites, we could confirm that O-glycosylation was exclusively present at T323, which was previously unknown. For both RBDs, the binding to SARS-CoV-2 antibodies of positive patients and affinity to ACE2 receptor was addressed showing comparable results. This work not only offers insights into RBD structural and functional features but also provides a workflow for characterization of new RBDs and batch-to-batch comparison.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...