Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 8(2): 107-112, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35619416

RESUMO

The order-to-disorder transition temperature (TODT) in a series of mixtures of polystyrene-b-poly(ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is identified by the disappearance of a quadrupolar 7Li NMR triplet peak splitting above a critical temperature, where a singlet is observed. The macroscopic alignment of ordered domains required to produce a quadrupolar splitting occurs due to exposure to the NMR magnetic field. Alignment is confirmed using small-angle X-ray scattering (SAXS). The TODT determined by NMR is consistent with that determined using SAXS.

2.
J Phys Chem B ; 122(4): 1537-1544, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29355016

RESUMO

Nanostructured block copolymer electrolytes have the potential to enable solid-state batteries with lithium metal anodes. We present complete continuum characterization of ion transport in a lamellar polystyrene-b-poly(ethylene oxide) copolymer/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte as a function of salt concentration. Electrochemical measurements are used to determine the Stefan-Maxwell salt diffusion coefficients [Formula: see text], [Formula: see text], and [Formula: see text]. Individual self-diffusion coefficients of the lithium- and TFSI-containing species were measured by pulsed-field gradient NMR (PFG-NMR). The NMR data indicate that salt diffusion is locally anisotropic, and this enables determination of a diffusion coefficient parallel to the lamellae, D∥, and a diffusion coefficient through defects in the lamellae, D⊥. We quantify anisotropic diffusion by defining an NMR morphology factor and demonstrate that it is correlated to defect density seen by transmission electron microscopy. We find agreement between the electrochemically determined Stefan-Maxwell diffusion coefficients and the diffusion coefficient D⊥ determined by PFG-NMR. Our work indicates that the performance of nanostructured block copolymer electrolytes in batteries is strongly influenced by ion transport through defects.

3.
Soft Matter ; 13(32): 5389-5396, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28702622

RESUMO

Perfluoropolyethers (PFPEs) are polymer electrolytes with fluorinated carbon backbones that have high flash points and have been shown to exhibit moderate conductivities and high cation transference numbers when mixed with lithium salts. Ion transport in four PFPE electrolytes with different endgroups was characterized by differential scanning calorimetry (DSC), ac impedance, and pulsed-field gradient NMR (PFG-NMR) as a function of salt concentration and temperature. In spite of the chemical similarity of the electrolytes, salt diffusion coefficients measured by PFG-NMR and the glass transition temperature measured by DSC appear to be uncorrelated to ionic conductivity measured by ac impedance. We calculate a non-dimensional parameter, ß, that depends on the salt diffusion coefficients and ionic conductivity. We also use the Vogel-Tammann-Fulcher relationship to fit the temperature dependence of conductivity. We present a linear relationship between the prefactor in the VTF fit and ß; both parameters vary by four orders of magnitude in our experimental window. Our analysis suggests that transport in electrolytes with low dielectric constants (low ß) is dictated by ion hopping between clusters.

4.
Soft Matter ; 13(22): 4047-4056, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28517013

RESUMO

Incipient microphase separation is observed by wide angle X-ray scattering (WAXS) in short chain multiblock copolymers consisting of perfluoropolyether (PFPE) and poly(ethylene oxide) (PEO) segments. Two PFPE-PEO block copolymers were studied; one with dihydroxyl end groups and one with dimethyl carbonate end groups. Despite having a low degree of polymerization (N ∼ 10), these materials exhibited significant scattering intensity, due to disordered concentration fluctuations between their PFPE-rich and PEO-rich domains. The disordered scattering intensity was fit to a model based on a multicomponent random phase approximation to determine the value of the interaction parameter, χ, and the radius of gyration, Rg. Over the temperature range 30-90 °C, the values of χ were determined to be very large (∼2-2.5), indicating a high degree of immiscibility between the PFPE and PEO blocks. In PFPE-PEO, due to the large electron density contrast between the fluorinated and non-fluorinated block and the high value of χ, disordered scattering was detected at intermediate scattering angles, (q ∼ 2 nm-1) for relatively small polymer chains. Our ability to detect concentration fluctuations was enabled by both a relatively large value of χ and significant scattering contrast.

5.
Macromolecules ; 46(4): 1651-1658, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25484454

RESUMO

The diffusion of coil-rod-coil triblock copolymers in entangled coil homopolymers is experimentally measured and demonstrated to be significantly slower than rod or coil homopolymers of the same molecular weight. A model coil-rod-coil triblock was prepared by expressing rodlike alanine-rich α-helical polypeptides in E. coli and conjugating coillike poly(ethylene oxide) (PEO) to both ends to form coil-rod-coil triblock copolymers. Tracer diffusion through entangled PEO homopolymer melts was measured using forced Rayleigh scattering at various rod lengths, coil molecular weights, and coil homopolymer concentrations. For rod lengths, L, that are close to the entanglementh length, a, the ratio between triblock diffusivity and coil homopolymer diffusivity decreases monotonically and is only a function of L/a, in quantitative agreement with previous simulation results. For large rod lengths, diffusion follows an arm retraction scaling, which is also consistent with previous theoretical predictions. These experimental results support the key predictions of theory and simulation, suggesting that the mismatch in curvature between rod and coil entanglement tubes leads to the observed diffusional slowing.

6.
Biomacromolecules ; 13(3): 719-26, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22300304

RESUMO

Polyelectrolyte multilayer films assembled from a hydrophobic N-alkylated polyethylenimine and a hydrophilic polyacrylate were discovered to exhibit strong antifouling, as well as antimicrobial, activities. Surfaces coated with these layer-by-layer (LbL) films, which range from 6 to 10 bilayers (up to 45 nm in thickness), adsorbed up to 20 times less protein from blood plasma than the uncoated controls. The dependence of the antifouling activity on the nature of the polycation, as well as on assembly conditions and the number of layers in the LbL films, was investigated. Changing the hydrophobicity of the polycation altered the surface composition and the resistance to protein adsorption of the LbL films. Importantly, this resistance was greater for coated surfaces with the polyanion on top; for these films, the average zeta potential pointed to a near neutral surface charge, thus, presumably minimizing their electrostatic interactions with the protein. The film surface exhibited a large contact angle hysteresis, indicating a heterogeneous topology likely due to the existence of hydrophobic-hydrophilic regions on the surface. Scanning electron micrographs of the film surface revealed the existence of nanoscale domains. We hypothesize that the existence of hydrophobic/hydrophilic nanodomains, as well as surface charge neutrality, contributes to the LbL film's resistance to protein adsorption.


Assuntos
Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Eletrólitos/química , Polímeros/química , Polímeros/farmacologia , Animais , Antibacterianos/química , Bovinos , Adesão Celular/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Propriedades de Superfície
7.
Mol Cell Biol ; 31(3): 442-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21135131

RESUMO

Activation-induced cytidine deaminase (AID) is a mutator enzyme that initiates class switch recombination and somatic hypermutation of immunoglobulin genes (Ig) in B lymphocytes. However, AID also produces off-target DNA damage, including mutations in oncogenes and double-stranded breaks that can serve as substrates for oncogenic chromosomal translocations. AID is strictly regulated by a number of mechanisms, including phosphorylation at serine 38 and threonine 140, which increase activity. Here we show that phosphorylation can also suppress AID activity in vivo. Serine 3 is a novel phospho-acceptor which, when mutated to alanine, leads to increased class switching and c-myc/IgH translocations without affecting AID levels or catalytic activity. Conversely, increasing AID phosphorylation specifically on serine 3 by interfering with serine/threonine protein phosphatase 2A (PP2A) leads to decreased class switching. We conclude that AID activity and its oncogenic potential can be downregulated by phosphorylation of serine 3 and that this process is controlled by PP2A.


Assuntos
Citidina Desaminase/química , Citidina Desaminase/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Translocação Genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Switching de Imunoglobulina/efeitos dos fármacos , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/genética , Hipermutação Somática de Imunoglobulina/efeitos dos fármacos , Hipermutação Somática de Imunoglobulina/genética , Translocação Genética/efeitos dos fármacos
8.
J Am Chem Soc ; 132(50): 17840-8, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21105659

RESUMO

Here we present a new bifunctional layer-by-layer (LbL) construct made by combining a permanent microbicidal polyelectrolyte multilayered (PEM) base film with a hydrolytically degradable PEM top film that offers controlled and localized delivery of therapeutics. Two degradable film architectures are presented: (1) bolus release of an antibiotic (gentamicin) to eradicate initial infection at the implant site, or (2) sustained delivery of an anti-inflammatory drug (diclofenac) to cope with inflammation at the site of implantation due to tissue injury. Each degradable film was built on top of a permanent base film that imparts the implantable device surface with microbicidal functionality that prevents the formation of biofilms. Controlled-delivery of gentamicin was demonstrated over hours and that of diclofenac over days. Both drugs retained their efficacy upon release. The permanent microbicidal base film was biocompatible with A549 epithelial cancer cells and MC3T3-E1 osteoprogenitor cells, while also preventing bacteria attachment from turbid media for the entire duration of the two weeks studied. The microbicidal base film retains its functionality after the biodegradable films have completely degraded. The versatility of these PEM films and their ability to prevent biofilm formation make them attractive as coatings for implantable devices.


Assuntos
Materiais Revestidos Biocompatíveis/química , Diclofenaco/farmacologia , Gentamicinas/farmacologia , Polímeros/química , Anti-Infecciosos/farmacologia , Linhagem Celular Tumoral , Preparações de Ação Retardada , Implantes de Medicamento , Humanos , Modelos Biológicos , Estrutura Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...