Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20177824

RESUMO

BackgroundThrombotic microangiopathy (TMA) has been repeatedly described in COVID-19 and may contribute to SARS-CoV-2 associated hypercoagulability. The underlying mechanisms remain elusive. We hypothesized that endothelial damage may lead to substantially increased concentrations of Von Willebrand Factor (VWF) with subsequent relative deficiency of ADAMTS13. MethodsA prospective controlled trial was performed on 75 patients with COVID-19 of mild to critical severity and 10 healthy controls. VWF antigen (VWF:Ag), ADAMTS13 and VWF multimer formation were analyzed in a German hemostaseologic laboratory. ResultsVWF:Ag was 4.8 times higher in COVID-19 patients compared to healthy controls (p< 0.0001), whereas ADAMTS13 activities were not significantly different (p = 0.24). The ADAMTS13/VWF:Ag ratio was significantly lower in COVID-19 than in the control group (24.4{+/-}20.5 vs. 79.7{+/-}33.2, p< 0.0001). Fourteen patients (18.7%) undercut a critical ratio of 10 as described in thrombotic thrombocytopenic purpura (TTP). Gel analysis of multimers resembled the TTP constellation with loss of the largest multimers in 75% and a smeary triplet pattern in 39% of the patients. The ADAMTS13/VWF:Ag ratio decreased continuously from mild to critical disease (ANOVA p = 0.026). Moreover, it differed significantly between surviving patients and those who died from COVID-19 (p = 0.001) yielding an AUC of 0.232 in ROC curve analysis. ConclusionCOVID-19 is associated with a substantial increase in VWF levels, which can exceed the ADAMTS13 processing capacity resulting in the formation of large VWF multimers identical to TTP. The ADAMTS13/VWF:Ag ratio is an independent predictor of severity of disease and mortality. These findings render further support to perform studies on the use of plasma exchange in COVID-19 and to include VWF and ADAMTS13 in the diagnostic workup.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20100636

RESUMO

Identification of immunogenic targets of SARS-CoV-2 is crucial for monitoring of antiviral immunity and vaccine design. Currently, mainly anti-spike (S)-protein adaptive immunity is investigated. However, also the nucleocapsid (N)- and membrane (M)-proteins should be considered as diagnostic and prophylactic targets. The aim of our study was to explore and compare the immunogenicity of SARS-CoV-2 S-, M- and N-proteins in context of different COVID-19 manifestations. Analyzing a cohort of COVID-19 patients with moderate, severe, and critical disease severity, we show that overlapping peptide pools (OPP) of all three proteins can activate SARS-CoV-2-reactive T-cells with a stronger response of CD4+ compared to CD8+ T-cells. Although interindividual variations for the three proteins were observed, M-protein induced the highest frequencies of CD4+ T-cells, suggesting its relevance as diagnostic and vaccination target. Importantly, patients with critical COVID-19 demonstrated the strongest T-cell response, including the highest frequencies of cytokine-producing bi- and trifunctional T-cells, for all three proteins. Although the higher magnitude and superior functionality of SARS-CoV-2-reactive T-cells in critical patients can also be a result of a stronger immunogenicity provided by severe infection, it disproves the hypothesis of insufficient SARS-CoV-2-reactive immunity in critical COVID-19. To this end, activation of effector T-cells with differentiated memory phenotype found in our study could cause hyper-reactive response in critical cases leading to immunopathogenesis. Conclusively, since the S-, M-, and N-proteins induce T-cell responses with individual differences, all three proteins should be evaluated for diagnostics and therapeutic strategies to avoid underestimation of cellular immunity and to deepen our understanding of COVID-19 immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...