Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(3): 2589-2602, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170870

RESUMO

We recently reported a new technique, light-induced triplet-triplet electron resonance (LITTER) spectroscopy, which allows quantification of the dipolar interaction between the photogenerated triplet states of two chromophores. Here we carry out a systematic LITTER study, considering orientation selection by the detection pulses, of a series of bis-porphyrin model peptides with different porphyrin-porphyrin distances and relative orientations. Orientation-dependent analysis of the dipolar datasets yields conformational information of the molecules in frozen solution which is in good agreement with density functional theory predictions. Additionally, a fast partial orientational-averaging treatment produces distance distributions with minimized orientational artefacts. Finally, by direct comparison of LITTER data to double electron-electron resonance (DEER) measured on a system with Cu(II) coordinated into the porphyrins, we demonstrate the advantages of the LITTER technique over the standard DEER methodology. This is due to the remarkable spectroscopic properties of the photogenerated porphyrin triplet state. This work sets the basis for the use of LITTER in structural investigations of unmodified complex biological macromolecules, which could be combined with Förster resonance energy transfer and microscopy inside cells.

2.
J Magn Reson ; 355: 107546, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37797559

RESUMO

The photoexcited triplet states of porphyrins show great promise for applications in the fields of opto-electronics, photonics, molecular wires, and spintronics. The magnetic properties of porphyrin triplet states are most conveniently studied by time-resolved continuous wave and pulse electron spin resonance (ESR). This family of techniques is singularly able to probe small yet essential details of triplet states: zero-field splittings, g-anisotropy, spin polarisation, and hyperfine interactions. These characteristics are linked to spin-orbit coupling (SOC) which is known to have a strong influence on photophysical properties such as intersystem crossing rates. The present study explores SOC effects induced by the presence of Pd2+ in various porphyrin architectures. In particular, the impact of this relativistic interaction on triplet state fine-structure and spin polarisation is investigated. These properties are probed using time-resolved ESR complemented by electron-nuclear double resonance. The findings of this study could influence the future design of molecular spintronic devices. The Pd2+ ion may be incorporated into porphyrin molecular wires as a way of controlling spin polarisation.

3.
J Am Chem Soc ; 145(42): 22859-22865, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37839071

RESUMO

To carry out reliable and comprehensive structural investigations, the exploitation of different complementary techniques is required. Here, we report that dual triplet-spin/fluorescent labels enable the first parallel distance measurements by electron spin resonance (ESR) and Förster resonance energy transfer (FRET) on exactly the same molecules with orthogonal chromophores, allowing for direct comparison. An improved light-induced triplet-triplet electron resonance method with 2-color excitation is used, improving the signal-to-noise ratio of the data and yielding a distance distribution that provides greater insight than the single distance resulting from FRET.

4.
J Chem Phys ; 159(10)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37694754

RESUMO

Cryptochrome 4a (Cry4a) has been proposed as the sensor at the heart of the magnetic compass in migratory songbirds. Blue-light excitation of this protein produces magnetically sensitive flavin-tryptophan radical pairs whose properties suggest that Cry4a could indeed be suitable as a magnetoreceptor. Here, we use cavity ring-down spectroscopy to measure magnetic field effects on the kinetics of these radical pairs in modified Cry4a proteins from the migratory European robin and from nonmigratory pigeon and chicken. B1/2, a parameter that characterizes the magnetic field-dependence of the reactions, was found to be larger than expected on the basis of hyperfine interactions and to increase with the delay between pump and probe laser pulses. Semiclassical spin dynamics simulations show that this behavior is consistent with a singlet-triplet dephasing (STD) relaxation mechanism. Analysis of the experimental data gives dephasing rate constants, rSTD, in the range 3-6 × 107 s-1. A simple "toy" model due to Maeda, Miura, and Arai [Mol. Phys. 104, 1779-1788 (2006)] is used to shed light on the origin of the time-dependence and the nature of the STD mechanism. Under the conditions of the experiments, STD results in an exponential approach to spin equilibrium at a rate considerably slower than rSTD. We attribute the loss of singlet-triplet coherence to electron hopping between the second and third tryptophans of the electron transfer chain and comment on whether this process could explain differences in the magnetic sensitivity of robin, chicken, and pigeon Cry4a's.


Assuntos
Proteínas Aviárias , Galinhas , Criptocromos , Animais , Galinhas/fisiologia , Criptocromos/química , Criptocromos/fisiologia , Campos Magnéticos , Migração Animal
5.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364348

RESUMO

We present a new photoswitchable spin label for light-induced pulsed electron paramagnetic resonance dipolar spectroscopy (LiPDS), the photoexcited triplet state of erythrosin B (EB), which is ideal for biological applications. With this label, we perform an in-depth study of the orientational effects in dipolar traces acquired using the refocused laser-induced magnetic dipole technique to obtain information on the distance and relative orientation between the EB and nitroxide labels in a rigid model peptide, in good agreement with density functional theory predictions. Additionally, we show that these orientational effects can be averaged to enable an orientation-independent analysis to determine the distance distribution. Furthermore, we demonstrate the feasibility of these experiments above liquid nitrogen temperatures, removing the need for expensive liquid helium or cryogen-free cryostats. The variety of choices in photoswitchable spin labels and the affordability of the experiments are critical for LiPDS to become a widespread methodology in structural biology.


Assuntos
Eritrosina , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Marcadores de Spin , Temperatura
6.
J Am Chem Soc ; 143(43): 17875-17890, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34664948

RESUMO

Distance distribution information obtained by pulsed dipolar EPR spectroscopy provides an important contribution to many studies in structural biology. Increasingly, such information is used in integrative structural modeling, where it delivers unique restraints on the width of conformational ensembles. In order to ensure reliability of the structural models and of biological conclusions, we herein define quality standards for sample preparation and characterization, for measurements of distributed dipole-dipole couplings between paramagnetic labels, for conversion of the primary time-domain data into distance distributions, for interpreting these distributions, and for reporting results. These guidelines are substantiated by a multi-laboratory benchmark study and by analysis of data sets with known distance distribution ground truth. The study and the guidelines focus on proteins labeled with nitroxides and on double electron-electron resonance (DEER aka PELDOR) measurements and provide suggestions on how to proceed analogously in other cases.


Assuntos
Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica/normas , Proteínas/química , Marcadores de Spin , Benchmarking , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Reprodutibilidade dos Testes
7.
J Phys Chem C Nanomater Interfaces ; 125(21): 11782-11790, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34276860

RESUMO

The photoexcited triplet states of porphyrin architectures are of significant interest in a wide range of fields including molecular wires, nonlinear optics, and molecular spintronics. Electron paramagnetic resonance (EPR) is a key spectroscopic tool in the characterization of these transient paramagnetic states singularly well suited to quantify spin delocalization. Previous work proposed a means of extracting the absolute signs of the zero-field splitting (ZFS) parameters, D and E, and triplet sublevel populations by transient continuous wave, hyperfine measurements, and magnetophotoselection. Here, we present challenges of this methodology for a series of meso-perfluoroalkyl-substituted zinc porphyrin monomers with orthorhombic symmetries, where interpretation of experimental data must proceed with caution and the validity of the assumptions used in the analysis must be scrutinized. The EPR data are discussed alongside quantum chemical calculations, employing both DFT and CASSCF methodologies. Despite some success of the latter in quantifying the magnitude of the ZFS interaction, the results clearly provide motivation to develop improved methods for ZFS calculations of highly delocalized organic triplet states.

8.
Nature ; 594(7864): 535-540, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34163056

RESUMO

Night-migratory songbirds are remarkably proficient navigators1. Flying alone and often over great distances, they use various directional cues including, crucially, a light-dependent magnetic compass2,3. The mechanism of this compass has been suggested to rely on the quantum spin dynamics of photoinduced radical pairs in cryptochrome flavoproteins located in the retinas of the birds4-7. Here we show that the photochemistry of cryptochrome 4 (CRY4) from the night-migratory European robin (Erithacus rubecula) is magnetically sensitive in vitro, and more so than CRY4 from two non-migratory bird species, chicken (Gallus gallus) and pigeon (Columba livia). Site-specific mutations of ErCRY4 reveal the roles of four successive flavin-tryptophan radical pairs in generating magnetic field effects and in stabilizing potential signalling states in a way that could enable sensing and signalling functions to be independently optimized in night-migratory birds.


Assuntos
Migração Animal , Criptocromos/genética , Campos Magnéticos , Aves Canoras , Animais , Proteínas Aviárias/genética , Galinhas , Columbidae , Retina
9.
J Phys Chem Lett ; 12(15): 3819-3826, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33856805

RESUMO

We explore the potential of orientation-resolved pulsed dipolar spectroscopy (PDS) in light-induced versions of the experiment. The use of triplets as spin-active moieties for PDS offers an attractive tool for studying biochemical systems containing optically active cofactors. Cofactors are often rigidly bound within the protein structure, providing an accurate positional marker. The rigidity leads to orientation selection effects in PDS, which can be analyzed to give both distance and mutual orientation information. Herein we present a comprehensive analysis of the orientation selection of a full set of light-induced PDS experiments. We exploit the complementary information provided by the different light-induced techniques to yield atomic-level structural information. For the first time, we measure a 2D frequency-correlated laser-induced magnetic dipolar spectrum, and we are able to monitor the complete orientation dependence of the system in a single experiment. Alternatively, the summed spectrum enables an orientation-independent analysis to determine the distance distribution.

10.
J Phys Chem Lett ; 12(1): 80-85, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33306382

RESUMO

We present a new technique, light-induced triplet-triplet electron resonance spectroscopy (LITTER), which measures the dipolar interaction between two photoexcited triplet states, enabling both the distance and angular distributions between the two triplet moieties to be determined on a nanometer scale. This is demonstrated for a model bis-porphyrin peptide that renders dipolar traces with strong orientation selection effects. Using simulations and density functional theory calculations, we extract distance distributions and relative orientations of the porphyrin moieties, allowing the dominant conformation of the peptide in a frozen solution to be identified. LITTER removes the requirement of current light-induced electron spin resonance pulse dipolar spectroscopy techniques to have a permanent paramagnetic moiety, becoming more suitable for in-cell applications and facilitating access to distance determination in unmodified macromolecular systems containing photoexcitable moieties. LITTER also has the potential to enable direct comparison with Förster resonance energy transfer and combination with microscopy inside cells.

11.
J Phys Chem A ; 124(29): 6068-6075, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585095

RESUMO

Identifying and characterizing systems that generate well-defined states with large electron spin polarization is of high interest for applications in molecular spintronics, high-energy physics, and magnetic resonance spectroscopy. The generation of electron spin polarization on free-radical substituents tethered to pentacene derivatives has recently gained a great deal of interest for its applications in molecular electronics. After photoexcitation of the chromophore, pentacene-radical derivatives can rapidly form spin-polarized triplet excited states through enhanced intersystem crossing. Under the right conditions, the triplet spin polarization, arising from mS-selective intersystem crossing rates, can be transferred to the tethered stable radical. The efficiency of this spin polarization transfer depends on many factors: local magnetic and electric fields, excited-state energetics, molecular geometry, and spin-spin coupling. Here, we present transient electron paramagnetic resonance (EPR) measurements on three pentacene derivatives tethered to Finland trityl, BDPA, or TEMPO radicals to explore the influence of the nature of the radical on the spin polarization transfer. We observe efficient polarization transfer between the pentacene excited triplet and the trityl radical but do not observe the same for the BDPA and TEMPO derivatives. The polarization transfer behavior in the pentacene-trityl system is also investigated in different glassy matrices and is found to depend markedly on the solvent used. The EPR results are rationalized with the help of femtosecond and nanosecond transient absorption measurements, yielding complementary information on the excited-state dynamics of the three pentacene derivatives. Notably, we observe a 2 orders of magnitude difference in the time scale of triplet formation between the pentacene-trityl system and the pentacene systems tethered with the BDPA and TEMPO radicals.

12.
Chem Sci ; 11(30): 7772-7781, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34094150

RESUMO

Certain pairs of paramagnetic species generated under conservation of total spin angular momentum are known to undergo magnetosensitive processes. Two prominent examples of systems exhibiting these so-called magnetic field effects (MFEs) are photogenerated radical pairs created from either singlet or triplet molecular precursors, and pairs of triplet states generated by singlet fission. Here, we showcase confocal microscopy as a powerful technique for the investigation of such phenomena. We first characterise the instrument by studying the field-sensitive chemistry of two systems in solution: radical pairs formed in a cryptochrome protein and the flavin mononucleotide/hen egg-white lysozyme model system. We then extend these studies to single crystals. Firstly, we report temporally and spatially resolved MFEs in flavin-doped lysozyme single crystals. Anisotropic magnetic field effects are then reported in tetracene single crystals. Finally, we discuss the future applications of confocal microscopy for the study of magnetosensitive processes with a particular focus on the cryptochrome-based chemical compass believed to lie at the heart of animal magnetoreception.

13.
J Phys Chem Lett ; 10(19): 5708-5712, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31512868

RESUMO

The spin delocalization in the radical cations of a series of ethyne-linked oligoporphyrins was investigated using EPR spectroscopy. The room-temperature spectral envelope for these oligomers deviates significantly from the benchmark N-0.5 trend in line width expected for a completely delocalized spin density, in contrast to the butadiyne-linked analogues measured previously. Here, we show, using DFT calculations and complementary low-temperature ENDOR measurements, that this deviation is primarily driven by a more pronounced inequivalence of the 14N spins within individual subunits for the ethyne-linked oligoporphyrins. Once this 14N inequivalence is taken into consideration, the room-temperature and ENDOR spectra for both butadiyne-linked and ethyne-linked oligomers, up to N = 5, can be simulated by similar static delocalization patterns. This work highlights the importance of EPR in exploring such spin delocalization phenomena while also demonstrating that the N-0.5 trend should not be interpreted in isolation but only in combination with careful simulation and theoretical modeling.

14.
Nat Commun ; 10(1): 3707, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31420558

RESUMO

The fact that many animals, including migratory birds, use the Earth's magnetic field for orientation and compass-navigation is fascinating and puzzling in equal measure. The physical origin of these phenomena has not yet been fully understood, but arguably the most likely hypothesis is based on the radical pair mechanism (RPM). Whilst the theoretical framework of the RPM is well-established, most experimental investigations have been conducted at fields several orders of magnitude stronger than the Earth's. Here we use transient absorption spectroscopy to demonstrate a pronounced orientation-dependence of the magnetic field response of a molecular triad system in the field region relevant to avian magnetoreception. The chemical compass response exhibits the properties of an inclination compass as found in migratory birds. The results underline the feasibility of a radical pair based avian compass and also provide further guidelines for the design and operation of exploitable chemical compass systems.


Assuntos
Migração Animal , Aves , Criptocromos , Campos Magnéticos , Orientação Espacial , Animais , Carotenoides/efeitos da radiação , Físico-Química , Fulerenos/efeitos da radiação , Lasers de Estado Sólido , Fotoquímica , Porfirinas/efeitos da radiação , Análise Espectral
15.
Phys Chem Chem Phys ; 21(22): 11676-11688, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31134254

RESUMO

The pulse EPR method ELDOR-detected NMR (EDNMR) is applied to two Cu(ii)-porphyrin dimers that are suitable building blocks for molecular wires. One of the dimers is meso-meso singly linked, the other one is ß, meso, ß-fused. We show experimentally and theoretically that EDNMR spectra contain information about the electron-electron couplings. The spectra of the singly linked dimer are consistent with a perpendicular arrangement of the porphyrin planes and negligible exchange coupling. In addition, the resolution is good enough to distinguish 63Cu and 65Cu in frozen glassy solution and to resolve a metal-ion nuclear quadrupole coupling of 32 MHz. In the case of the fused dimer, we observe so far unreported signal enhancements, or anti-holes, in the EDNMR spectra. These are readily explained in a generalized framework based on [Cox et al., J. Magn. Reson., 2017, 280, 63-78], if an effective spin of S = 1 is assumed, in accordance with SQUID measurements. The positions of the anti-holes encode a zero-field splitting with |D| = 240 MHz, which is about twice as large as expected from the point-dipole approximation. These findings demonstrate the previously unrecognized applicability and versatility of the EDNMR technique in the quantitative study of complex paramagnetic compounds.

16.
Chemphyschem ; 20(7): 931-935, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30817078

RESUMO

Light-induced pulsed EPR dipolar spectroscopic methods allow the determination of nanometer distances between paramagnetic sites. Here we employ orthogonal spin labels, a chromophore triplet state and a stable radical, to carry out distance measurements in singly nitroxide-labeled human neuroglobin. We demonstrate that Zn-substitution of neuroglobin, to populate the Zn(II) protoporphyrin IX triplet state, makes it possible to perform light-induced pulsed dipolar experiments on hemeproteins, extending the use of light-induced dipolar spectroscopy to this large class of metalloproteins. The versatility of the method is ensured by the employment of different techniques: relaxation-induced dipolar modulation enhancement (RIDME) is applied for the first time to the photoexcited triplet state. In addition, an alternative pulse scheme for laser-induced magnetic dipole (LaserIMD) spectroscopy, based on the refocused-echo detection sequence, is proposed for accurate zero-time determination and reliable distance analysis.


Assuntos
Neuroglobina/química , Óxidos N-Cíclicos/química , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Luz , Mesilatos/química , Estrutura Molecular , Mutação , Neuroglobina/genética , Protoporfirinas/química , Protoporfirinas/efeitos da radiação , Marcadores de Spin
17.
J Phys Chem Lett ; 9(20): 6131-6135, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30284834

RESUMO

Multivalent carbohydrate-lectin interactions are a key concept in biological processes mediating, for example, signaling and adhesion. Binding affinities of multivalent ligands often increase by orders of magnitude compared to a monovalent binding situation. Thus, the design of multivalent ligands as potent inhibitors is a highly active field of research, where knowledge about the binding site topology is crucial. Here, we report a general strategy for precise distance measurements between the binding sites of multivalent target proteins using monovalent ligands. We designed and synthesized Monovalent, conformationally Unambiguously Spin-labeled LIgands (MUeSLI). Distances between the binding sites of the multivalent model lectin wheat germ agglutinin in complex with a GlcNAc-derived MUeSLI were determined using pulsed electron paramagnetic resonance spectroscopy. This approach is an efficient method for exploring multivalent systems with monovalent ligands, and it is readily transferable to other target proteins, allowing the targeted design of multivalent ligands without structural information available.

18.
J Magn Reson ; 297: 9-16, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30326343

RESUMO

Numerically optimised microwave pulses are used to increase excitation efficiency and modulation depth in electron spin resonance experiments performed on a spectrometer equipped with an arbitrary waveform generator. The optimisation procedure is sample-specific and reminiscent of the magnet shimming process used in the early days of nuclear magnetic resonance - an objective function (for example, echo integral in a spin echo experiment) is defined and optimised numerically as a function of the pulse waveform vector using noise-resilient gradient-free methods. We found that the resulting shaped microwave pulses achieve higher excitation bandwidth and better echo modulation depth than the pulse shapes used as the initial guess. Although the method is theoretically less sophisticated than simulation based quantum optimal control techniques, it has the advantage of being free of the linear response approximation; rapid electron spin relaxation also means that the optimisation takes only a few seconds. This makes the procedure fast, convenient, and easy to use. An important application of this method is at the final stage of the implementation of theoretically designed pulse shapes: compensation of pulse distortions introduced by the instrument. The performance is illustrated using spin echo and out-of-phase electron spin echo envelope modulation experiments. Interface code between Bruker SpinJet arbitrary waveform generator and Matlab is included in versions 2.2 and later of the Spinach library.

19.
J Chem Phys ; 149(3): 034103, 2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037236

RESUMO

Radical pair recombination reactions are known to be sensitive to the application of both low and high magnetic fields. The application of a weak magnetic field reduces the singlet yield of a singlet-born radical pair, whereas the application of a strong magnetic field increases the singlet yield. The high field effect arises from energy conservation: when the magnetic field is stronger than the sum of the hyperfine fields in the two radicals, S → T± transitions become energetically forbidden, thereby reducing the number of pathways for singlet to triplet interconversion. The low field effect arises from symmetry breaking: the application of a weak magnetic field lifts degeneracies among the zero field eigenstates and increases the number of pathways for singlet to triplet interconversion. However, the details of this effect are more subtle and have not previously been properly explained. Here we present a complete analysis of the low field effect in a radical pair containing a single proton and in a radical pair in which one of the radicals contains a large number of hyperfine-coupled nuclear spins. We find that the new transitions that occur when the field is switched on are between S and T0 in both cases, and not between S and T± as has previously been claimed. We then illustrate this result by using it in conjunction with semiclassical spin dynamics simulations to account for the observation of a biphasic-triphasic-biphasic transition with increasing magnetic field strength in the magnetic field effect on the time-dependent survival probability of a photoexcited carotenoid-porphyrin-fullerene radical pair.

20.
J Am Chem Soc ; 140(28): 8705-8713, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29940116

RESUMO

It is a remarkable fact that ∼50 µT magnetic fields can alter the rates and yields of certain free-radical reactions and that such effects might be the basis of the light-dependent ability of migratory birds to sense the direction of the Earth's magnetic field. The most likely sensory molecule at the heart of this chemical compass is cryptochrome, a flavin-containing protein that undergoes intramolecular, blue-light-induced electron transfer to produce magnetically sensitive radical pairs. To learn more about the factors that control the magnetic sensitivity of cryptochromes, we have used a set of de novo designed protein maquettes that self-assemble as four-α-helical proteins incorporating a single tryptophan residue as an electron donor placed approximately 0.6, 1.1, or 1.7 nm away from a covalently attached riboflavin as chromophore and electron acceptor. Using a specifically developed form of cavity ring-down spectroscopy, we have characterized the photochemistry of these designed flavoprotein maquettes to determine the identities and kinetics of the transient radicals responsible for the magnetic field effects. Given the gross structural and dynamic differences from the natural proteins, it is remarkable that the maquettes show magnetic field effects that are so similar to those observed for cryptochromes.


Assuntos
Proteínas Aviárias/metabolismo , Aves/metabolismo , Criptocromos/metabolismo , Radicais Livres/metabolismo , Animais , Proteínas Aviárias/química , Criptocromos/química , Transporte de Elétrons , Radicais Livres/química , Luz , Campos Magnéticos , Modelos Moleculares , Processos Fotoquímicos , Conformação Proteica em alfa-Hélice
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...