Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 20(2): 91-101, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25307784

RESUMO

Diseases caused by soil-borne pathogens result worldwide in significant yield losses in economically important crops. In contrast to foliar diseases, relatively little is known about the nature of root defenses against these pathogens. This review summarizes the current knowledge on root infection strategies, root-specific preformed barriers, pathogen recognition, and defense signaling. Studies reviewed here suggest that many commonalities as well as differences exist in defense strategies employed by roots and foliar tissues during pathogen attack. Importantly, in addition to pathogens, plant roots interact with a plethora of non-pathogenic and symbiotic microorganisms. Therefore, a good understanding of how plant roots interact with the microbiome would be particularly important to engineer resistance to root pathogens without negatively altering root-beneficial microbe interactions.


Assuntos
Fungos/fisiologia , Oomicetos/fisiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Rizosfera
2.
Bioorg Med Chem ; 21(4): 979-92, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23294830

RESUMO

PPARγ is a member of the nuclear hormone receptor family and plays a key role in the regulation of glucose homeostasis. This Letter describes the discovery of a novel chemical class of diarylsulfonamide partial agonists that act as selective PPARγ modulators (SPPARγMs) and display a unique pharmacological profile compared to the thiazolidinedione (TZD) class of PPARγ full agonists. Herein we report the initial discovery of partial agonist 4 and the structure-activity relationship studies that led to the selection of clinical compound INT131 (3), a potent PPARγ partial agonist that displays robust glucose-lowering activity in rodent models of diabetes while exhibiting a reduced side-effects profile compared to marketed TZDs.


Assuntos
PPAR gama/agonistas , Quinolinas/química , Sulfonamidas/química , Administração Oral , Animais , Sítios de Ligação , Cristalografia por Raios X , Citocromo P-450 CYP3A , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Meia-Vida , Resistência à Insulina , Masculino , Camundongos , PPAR gama/metabolismo , Estrutura Terciária de Proteína , Quinolinas/farmacocinética , Quinolinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêutico
3.
Front Plant Sci ; 3: 108, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22661981

RESUMO

In this study, the molecular basis of the induced systemic resistance (ISR) in Arabidopsis thaliana by the biocontrol fungus Trichoderma hamatum T382 against the phytopathogen Botrytis cinerea B05-10 was unraveled by microarray analysis both before (ISR-prime) and after (ISR-boost) additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance toward secondary infections. Treatment with T. hamatum T382 primes the plant (ISR-prime), resulting in an accelerated activation of the defense response against B. cinerea during ISR-boost and a subsequent moderation of the B. cinerea induced defense response. Microarray results were validated for representative genes by qRT-PCR. The involvement of various defense-related pathways was confirmed by phenotypic analysis of mutants affected in these pathways, thereby proving the validity of our approach. Combined with additional anthocyanin analysis data these results all point to the involvement of the phenylpropanoid pathway in T. hamatum T382-induced ISR.

4.
J Med Chem ; 52(6): 1518-21, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19231864

RESUMO

Inhibition of the protein chaperone Hsp90 is a promising new approach to cancer therapy. We describe the preparation of potent non-benzoquinone ansamycins. One of these analogues, generated by feeding 3-amino-5-chlorobenzoic acid to a genetically engineered strain of Streptomyces hygroscopicus, shows high accumulation and long residence time in tumor tissue, is well-tolerated upon intravenous dosing, and is highly efficacious in the COLO205 mouse tumor xenograft model.


Assuntos
Engenharia Genética , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Rifabutina/farmacologia , Streptomyces/genética , Calorimetria , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos
5.
Cancer Res ; 69(2): 510-7, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19147564

RESUMO

The export protein CRM1 is required for the nuclear export of a wide variety of cancer-related "cargo" proteins including p53, c-Abl, and FOXO-3A. Leptomycin B (LMB) is a highly specific inhibitor of CRM1 with significant in vitro potency but limited in vivo efficacy due to toxicity. We now report a series of semisynthetic LMB derivatives showing substantially improved therapeutic windows. Exposure of cancer cells to these compounds leads to a rapid and prolonged block of nuclear export and apoptosis. In contrast to what is observed in cancer cells, these agents induce cell cycle arrest, but not apoptosis, in normal lung fibroblasts. These new nuclear export inhibitors (NEI) maintain the high potency of LMB, are up to 16-fold better tolerated than LMB in vivo, and show significant efficacy in multiple mouse xenograft models. These NEIs show the potential of CRM1 inhibitors as novel and potent anticancer agents.


Assuntos
Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Núcleo Celular/efeitos dos fármacos , Carioferinas/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/farmacologia , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Células HCT116 , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...