Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Chem ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38863407

RESUMO

BACKGROUND: Maternal cell contamination (MCC) in prenatal samples poses a risk for misdiagnosis, and therefore, testing for contamination is necessary during genetic analysis of prenatal specimens. MCC testing is currently performed as a method separate from the diagnostic method. With the increasing application of whole exome sequencing (WES) in prenatal diagnosis, we sought to develop a method to estimate the level of contamination from WES data, aiming to eliminate the need for a separate MCC test. METHODS: To investigate the impact of MCC on the distribution of the variant allele fraction in WES data, contamination was both simulated in silico and artificially induced. Subsequently, a bioinformatic WES contamination method was developed and validated by comparing its performance to that of the gold standard (short tandem repeat [STR]) MCC test, validated for detecting ≥5% contamination. Finally, post-implementation performance was monitored for a 15-month period. RESULTS: During validation, 270 prenatal samples underwent analysis with both WES and the gold standard test. In 259 samples, the results were concordant (248 not contaminated, 11 contaminated with both tests). In 11 samples, contamination was only detected in WES data (2 of which contained ≥5% contamination with WES, which is above the detection limit of the gold standard test). The data of the post-implementation evaluation on 361 samples, of which 68 were contaminated, were in line with the validation data. CONCLUSIONS: Contamination can reliably be detected in WES data, rendering a separate contamination test unnecessary for the majority of samples.

2.
Prenat Diagn ; 43(4): 527-543, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36647814

RESUMO

OBJECTIVE: We performed a 1-year evaluation of a novel strategy of simultaneously analyzing single nucleotide variants (SNVs), copy number variants (CNVs) and copy-number-neutral Absence-of-Heterozygosity from Whole Exome Sequencing (WES) data for prenatal diagnosis of fetuses with ultrasound (US) anomalies and a non-causative QF-PCR result. METHODS: After invasive diagnostics, whole exome parent-offspring trio-sequencing with exome-wide CNV analysis was performed in pregnancies with fetal US anomalies and a non-causative QF-PCR result (WES-CNV). On request, additional SNV-analysis, restricted to (the) requested gene panel(s) only (with the option of whole exome SNV-analysis afterward) was performed simultaneously (WES-CNV/SNV) or as rapid SNV-re-analysis, following a normal CNV analysis. RESULTS: In total, 415 prenatal samples were included. Following a non-causative QF-PCR result, WES-CNV analysis was initially requested for 74.3% of the chorionic villus (CV) samples and 45% of the amniotic fluid (AF) samples. In case WES-CNV analysis did not reveal a causative aberration, SNV-re-analysis was requested in 41.7% of the CV samples and 17.5% of the AF samples. All initial analyses could be finished within 2 weeks after sampling. For SNV-re-analysis during pregnancy, turn-around-times (TATs) varied between one and 8 days. CONCLUSION: We show a highly efficient all-in-one WES-based strategy, with short TATs, and the option of rapid SNV-re-analysis after a normal CNV result.


Assuntos
Variações do Número de Cópias de DNA , Feto , Gravidez , Feminino , Humanos , Sequenciamento do Exoma , Heterozigoto , Feto/diagnóstico por imagem , Feto/anormalidades , Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...