Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(1): e23343, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071602

RESUMO

Caveolin-1 (CAV1), the main structural component of caveolae, is phosphorylated at tyrosine-14 (pCAV1), regulates signal transduction, mechanotransduction, and mitochondrial function, and plays contrasting roles in cancer progression. We report that CRISPR/Cas9 knockout (KO) of CAV1 increases mitochondrial oxidative phosphorylation, increases mitochondrial potential, and reduces ROS in MDA-MB-231 triple-negative breast cancer cells. Supporting a role for pCAV1, these effects are reversed upon expression of CAV1 phosphomimetic CAV1 Y14D but not non-phosphorylatable CAV1 Y14F. pCAV1 is a known effector of Rho-associated kinase (ROCK) signaling and ROCK1/2 signaling mediates CAV1 promotion of increased mitochondrial potential and decreased ROS production in MDA-MB-231 cells. CAV1/ROCK control of mitochondrial potential and ROS is caveolae-independent as similar results were observed in PC3 prostate cancer cells lacking caveolae. Increased mitochondrial health and reduced ROS in CAV1 KO MDA-MB-231 cells were reversed by knockdown of the autophagy protein ATG5, mitophagy regulator PINK1 or the mitochondrial fission protein Drp1 and therefore due to mitophagy. Use of the mitoKeima mitophagy probe confirmed that CAV1 signaling through ROCK inhibited basal mitophagic flux. Activation of AMPK, a major mitochondrial homeostasis protein inhibited by ROCK, is inhibited by CAV1-ROCK signaling and mediates the increased mitochondrial potential, decreased ROS, and decreased basal mitophagy flux observed in wild-type MDA-MB-231 cells. CAV1 regulation of mitochondrial health and ROS in cancer cells therefore occurs via ROCK-dependent inhibition of AMPK. This study therefore links pCAV1 signaling activity at the plasma membrane with its regulation of mitochondrial activity and cancer cell metabolism through control of mitophagy.


Assuntos
Caveolina 1 , Neoplasias da Próstata , Masculino , Humanos , Caveolina 1/genética , Caveolina 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mecanotransdução Celular , Mitocôndrias/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Mitocondriais/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
2.
ACS Synth Biol ; 11(4): 1692-1698, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35316041

RESUMO

Allosteric transcription factor (aTF) biosensors are valuable tools for engineering microbes toward a multitude of applications in metabolic engineering, biotechnology, and synthetic biology. One of the challenges toward constructing functional and diverse biosensors in engineered microbes is the limited toolbox of identified and characterized aTFs. To overcome this, extensive bioprospecting of aTFs from sequencing databases, as well as aTF ligand-specificity engineering are essential in order to realize their full potential as biosensors for novel applications. In this work, using the TetR-family repressor CmeR from Campylobacter jejuni, we construct aTF genetic circuits that function as salicylate biosensors in the model organisms Escherichia coli and Saccharomyces cerevisiae. In addition to salicylate, we demonstrate the responsiveness of CmeR-regulated promoters to multiple aromatic and indole inducers. This relaxed ligand specificity of CmeR makes it a useful tool for detecting molecules in many metabolic engineering applications, as well as a good target for directed evolution to engineer proteins that are able to detect new and diverse chemistries.


Assuntos
Técnicas Biossensoriais , Fatores de Transcrição , Escherichia coli/genética , Escherichia coli/metabolismo , Indóis , Ligantes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Salicilatos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cancer Metastasis Rev ; 39(2): 455-469, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32440845

RESUMO

Caveolin-1 (CAV1) has long been implicated in cancer progression, and while widely accepted as an oncogenic protein, CAV1 also has tumor suppressor activity. CAV1 was first identified in an early study as the primary substrate of Src kinase, a potent oncoprotein, where its phosphorylation correlated with cellular transformation. Indeed, CAV1 phosphorylation on tyrosine-14 (Y14; pCAV1) has been associated with several cancer-associated processes such as focal adhesion dynamics, tumor cell migration and invasion, growth suppression, cancer cell metabolism, and mechanical and oxidative stress. Despite this, a clear understanding of the role of Y14-phosphorylated pCAV1 in cancer progression has not been thoroughly established. Here, we provide an overview of the role of Src-dependent phosphorylation of tumor cell CAV1 in cancer progression, focusing on pCAV1 in tumor cell migration, focal adhesion signaling and metabolism, and in the cancer cell response to stress pathways characteristic of the tumor microenvironment. We also discuss a model for Y14 phosphorylation regulation of CAV1 effector protein interactions via the caveolin scaffolding domain.


Assuntos
Caveolina 1/metabolismo , Neoplasias/metabolismo , Tirosina/metabolismo , Animais , Movimento Celular/fisiologia , Progressão da Doença , Adesões Focais/metabolismo , Humanos , Neoplasias/patologia , Fosforilação , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...