Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269356

RESUMO

Binary and ternary composites (CM) based on M-type hexaferrite (HF), polymer matrix (PVDF) and carbon nanomaterials (quasi-one-dimensional carbon nanotubes-CNT and quasi-two-dimensional carbon nanoflakes-CNF) were prepared and investigated for establishing the impact of the different nanosized carbon on magnetic and electrodynamic properties. The ratio between HF and PVDF in HF + PVDF composite was fixed (85 wt% HF and 15 wt% PVDF). The concentration of CNT and CNF in CM was fixed (5 wt% from total HF + PVDF weight). The phase composition and microstructural features were investigated using XRD and SEM, respectively. It was observed that CM contains single-phase HF, γ- and ß-PVDF and carbon nanomaterials. Thus, we produced composites that consist of mixed different phases (organic insulator matrix-PDVF; functional magnetic fillers-HF and highly electroconductive additives-CNT/CNF) in the required ratio. VSM data demonstrate that the main contribution in main magnetic characteristics belongs to magnetic fillers (HF). The principal difference in magnetic and electrodynamic properties was shown for CNT- and CNF-based composites. That confirms that the shape of nanosized carbon nanomaterials impact on physical properties of the ternary composited-based magnetic fillers in polymer dielectric matrix.

2.
Sci Adv ; 6(15): eaax9191, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32300644

RESUMO

Electrothermal elements are used in various energy harvesters, coolers, and radiation detectors. The optimal operation of these elements relies on mastering two competing boundary conditions: the maximization of the electrothermal response and the blockade of lattice (phonon) thermal conduction. In this work, we propose and demonstrate that efficient electrothermal operation and phonon blocking can be achieved in solid-state thermionic junctions, paving the way for new phonon-engineered high-efficiency refrigerators and sensors. Our experimental demonstration uses semiconductor-superconductor (Sm-S) junctions where the electrothermal response arises from the superconducting energy gap and the phonon blocking results from the acoustic transmission bottleneck at the junction. We demonstrate a cooling platform where a silicon chip, suspended only from the Sm-S junctions, is cooled by ~40% from the bath temperature. We also show how the observed effect can be used in radiation detectors and multistage electronic refrigerators suitable for cooling of quantum technology devices.

3.
J Gen Virol ; 98(1): 50-55, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28221100

RESUMO

Currently, many DNA vaccines against infectious diseases are in clinical trials; however, their efficacy needs to be improved. The potency of DNA immunogen can be optimized by targeting technologies. In the current study, to increase the efficacy of NS1 encoded by plasmid, proteasome targeting was applied. NS1 variants with or without translocation sequence and with ornithine decarboxylase as a signal of proteasomal degradation were tested for expression, localization, protein turnover, proteasomal degradation and protection properties. Deletion of translocation signal abrogated presentation of NS1 on the cell surface and increased proteasomal processing of NS1. Fusion with ornithine decarboxylase led to an increase of protein turnover and the proteasome degradation rate of NS1. Immunization with NS1 variants with increased proteasome processing protected mice from viral challenge only partially; however, the survival time of infected mice was prolonged in these groups. These data can give a presupposition for formulation of specific immune therapy for infected individuals.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Proteólise , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo , Vacinas Virais/imunologia , Animais , Camundongos , Análise de Sobrevida , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
4.
PLoS One ; 8(4): e61094, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23585873

RESUMO

Tick-borne encephalitis virus (TBEV) is one of the most prevalent and medically important tick-borne arboviruses in Eurasia. There are overlapping foci of two flaviviruses: TBEV and Omsk hemorrhagic fever virus (OHFV) in Russia. Inactivated vaccines exist only against TBE. There are no antiviral drugs for treatment of both diseases. Optimal animal models are necessary to study efficacy of novel vaccines and treatment preparations against TBE and relative flaviviruses. The models for TBE and OHF using subcutaneous inoculation were tested in Cercopithecus aethiops and Macaca fascicularis monkeys with or without prior immunization with inactivated TBE vaccine. No visible clinical signs or severe pathomorphological lesions were observed in any monkey infected with TBEV or OHFV. C. aethiops challenged with OHFV showed massive hemolytic syndrome and thrombocytopenia. Infectious virus or viral RNA was revealed in visceral organs and CNS of C. aethiops infected with both viruses; however, viremia was low. Inactivated TBE vaccines induced high antibody titers against both viruses and expressed booster after challenge. The protective efficacy against TBE was shown by the absence of virus in spleen, lymph nodes and CNS of immunized animals after challenge. Despite the absence of expressed hemolytic syndrome in immunized C. aethiops TBE vaccine did not prevent the reproduction of OHFV in CNS and visceral organs. Subcutaneous inoculation of M. fascicularis with two TBEV strains led to a febrile disease with well expressed viremia, fever, and virus reproduction in spleen, lymph nodes and CNS. The optimal terms for estimation of the viral titers in CNS were defined as 8-16 days post infection. We characterized two animal models similar to humans in their susceptibility to tick-borne flaviviruses and found the most optimal scheme for evaluation of efficacy of preventive and therapeutic preparations. We also identified M. fascicularis to be more susceptible to TBEV than C. aethiops.


Assuntos
Chlorocebus aethiops/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Encefalite Transmitida por Carrapatos/prevenção & controle , Encefalite Transmitida por Carrapatos/veterinária , Macaca fascicularis/imunologia , Vacinação , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Chlorocebus aethiops/virologia , Modelos Animais de Doenças , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Especificidade de Hospedeiro , Humanos , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfonodos/virologia , Macaca fascicularis/virologia , Masculino , Baço/efeitos dos fármacos , Baço/imunologia , Baço/virologia , Resultado do Tratamento , Vacinas Virais/administração & dosagem
5.
Phys Rev Lett ; 102(20): 200801, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19519012

RESUMO

We demonstrate quantum-limited electronic refrigeration of a metallic island in a low-temperature microcircuit. We show that matching the impedance of the circuit enables refrigeration at a distance, of about 50 microm in our case, through superconducting leads with a cooling power determined by the quantum of thermal conductance. In a reference sample with a mismatched circuit this effect is absent. Our results are consistent with the concept of electromagnetic heat transport. We observe and analyze the crossover between electromagnetic and quasiparticle heat flux in a superconductor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...