Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(13): 8683-8691, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936829

RESUMO

Perovskite materials play a significant role in oxygen sensors due to their fascinating electrical and ionic conductivities. The sol-gel technique was employed to prepare various compositions of B-site-deficient Fe-doped SrTiO3 (iron-doped strontium titanate) or Sr(Ti0.6Fe0.4)1-x O3-δ , where x = 0.01, 0.02, and 0.03. The XRD results revealed that the principle crystalline phase of the samples was the cubic perovskite structure. The B-site deficiency improved the ionic and total conductivities of Sr(Ti0.6Fe0.4)1-x O3-δ . A small polaron conduction behavior occurred in the total electrical conductivity. The XPS results showed that the oxygen vacancy value decreased with the rise in the amount of B-site deficiencies. A lower B-site deficiency amount could produce more oxygen vacancies in the lattice but resulted in the ordering of vacancies and then lower ionic conductivity. The aging behavior was caused by the ordering of oxygen vacancies and resulted in a degeneration of electrical features under a long service time. Conversely, augmentation of the B-site deficiency amount inhibited the tendency for the ordering of oxygen vacancies and then promoted the electrical performance under a long usage time. The conduction mechanism of oxygen ions through oxygen vacancies was thoroughly investigated and discussed. The current study presents a feasible approach to ameliorate the physical features of conductors through doping the B-site of the perovskite layer with Fe, which would be a fruitful approach for numerous applications, including oxygen sensors and fuel cells anodes.

2.
Molecules ; 27(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234682

RESUMO

In this work, the optical properties of tetra(imidazole) of palladium phthalocyanine (PdPc(Im)4) in solution form and thin films on glass and fluorine-doped tin oxide (FTO) substrates were investigated via the thermal evaporation technique. The optical band gap was evaluated by ultraviolet-visible spectroscopy (UV-Vis). The energy band gap values were determined based on the Tauc graph. In addition, time-dependent density functional theory (TD-DFT) was used to simulate the UV-Vis absorption spectrum of the (PdPc(Im)4) molecule in the Dimethyl Sulfoxide (DMSO) solution phase. A good correlation was found between the DFT results and the experimental optical results. The band gap values between the experimental and DFT-simulated values are presented. The energy band gap of (PdPc(Im)4) obtained from the DFT calculations showed that it can be efficiently regulated. Frontier molecular orbitals and molecular electrostatic potentials were also proposed in this work. The surface study of the layers deposited on FTO was considered by atomic force microscopy (AFM) and scanning electron microscopy (SEM), and the results demonstrated good homogeneity covering the entire surface. The SEM image showed a homogeneous distribution of the grains with some spherical or rod-shaped structures and no agglomeration structures. This work rendered a strategy for regulating the energy band gap and compared the experimental observations obtained with theoretical studies, which provides a fundamental insight into the optical band for optoelectronic and thin-film solar cells.

3.
Materials (Basel) ; 14(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34640176

RESUMO

This paper reports the effect of Nickel (Ni) on indium sulfide (In2S3) powder. This work presents a systematic study of the physical and dielectric properties of In2-xS3Nix powders with 0, 2, 4, and 6 at.% of nickel. Doped and undoped samples were investigated by X-ray powder diffraction (XRD), energy dispersive X-ray spectroscopy, thermal gravimetric analysis, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and impedance spectroscopy. XRD patterns revealed that each In2-xS3Nix composition was crystalline, which was also confirmed by the FTIR results. The presence of Ni in the samples was confirmed by energy dispersive spectroscopy (EDS). The Raman studies show different peaks related to the In2S3 phase and do not reveal any secondary phases of In-Ni and Ni-S. The SEM images of the undoped and Ni-doped In2S3 samples indicated a correlation between dopant content and the surface roughness and porosity of the samples. The impedance analysis indicated semiconductor behavior present in all samples, as well as a decrease in resistance with increasing Ni content. This work opens up the possibility of tailoring the properties and integrating Ni-doped In2S3 nanocomposites as thin film layers in future solar cells.

4.
ACS Omega ; 6(16): 10655-10667, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34056219

RESUMO

In this study, we investigated the potential of palladium tetrakis (imidazole) phthalocyanine (PdPc(Imz)4) for use as an organic semiconductor for improving the photovoltaic performance. In order to get more information about the prevailing model of the conduction mechanism (correlated barrier hopping (CBH)) for PdPc(Imz)4, electrical impedance measurements were performed at different temperatures and the obtained data were simulated by the Kohlraush Williams Watt (KWW) approach. Theoretical studies (density functional theory (DFT)) were performed and molecular electrostatic potential (MEP) maps were also extracted to understand the relationship between the molecular structures and the molecular electronic structure of PdPc(Imz)4 and its semiconductor properties. Furthermore, studies on the AC electrical process as a function of temperature highlighted a hopping charge transport according to an equivalent electrical circuit composed of a parallel constant-phase element (CPE), capacitance in the grain boundary layer (C g), and resistance of the grain boundary (R g). To improve interpretation of the results, an in-depth analysis of the behavior of the electric transport was conducted. As a result, the correlated barrier hopping (CBH) conduction mechanism was shown to be the most suitable predominant conduction mechanism.

5.
Antibiotics (Basel) ; 9(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899195

RESUMO

Recently, titanium dioxide (TiO2) nanomaterials have gained increased attention because of their cost-effective, safe, stable, non-toxic, non-carcinogenic, photocatalytic, bactericidal, biomedical, industrial and waste-water treatment applications. The aim of the present work is the synthesis of electrospun TiO2 nanofibers (NFs) in the presence of different amounts of air-argon mixtures using sol-gel and electrospinning approaches. The physicochemical properties of the synthesized NFs were examined by scanning and transmission electron microscopies (SEM and TEM) coupled with energy-dispersive X-ray spectroscopy (EDX), ultraviolet-visible spectroscopy and thermogravimetric analyzer (TGA). The antibacterial and antibiofilm activity of synthesized NFs against Gram-negative Pseudomonas aeruginosa and Gram-positive methicillin-resistant Staphylococcusaureus (MRSA) was investigated by determining their minimum bacteriostatic and bactericidal values. The topological and morphological alteration caused by TiO2 NFs in bacterial cells was further analyzed by SEM. TiO2 NFs that were calcined in a 25% air-75% argon mixture showed maximum antibacterial and antibiofilm activities. The minimum inhibitory concentration (MIC)/minimum bactericidal concentration (MBC) value of TiO2 NFs against P. aeruginosa was 3 and 6 mg/mL and that for MRSA was 6 and 12 mg/mL, respectively. The MIC/MBC and SEM results show that TiO2 NFs were more active against Gram-negative P. aeruginosa cells than Gram-positive S. aureus. The inhibition of biofilm formation by TiO2 NFs was investigated quantitatively by tissue culture plate method using crystal violet assay and it was found that TiO2 NFs inhibited biofilm formation by MRSA and P. aeruginosa in a dose-dependent manner. TiO2 NFs calcined in a 25% air-75% argon mixture exhibited maximum biofilm formation inhibition of 75.2% for MRSA and 72.3% for P. aeruginosa at 2 mg/mL, respectively. The antibacterial and antibiofilm results suggest that TiO2 NFs can be used to coat various inanimate objects, in food packaging and in waste-water treatment and purification to prevent bacterial growth and biofilm formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...