Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 605937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828569

RESUMO

African countries face key challenges in the deployment of GM crops due to incongruities in the processes for effective and efficient commercial release while simultaneously ensuring food and environmental safety. Against the backdrop of the preceding scenario, and for the effective and efficient commercial release of GM crops for cultivation by farmers, while simultaneously ensuring food and environmental safety, there is a need for the close collaboration of and the interplay between the biosafety competent authorities and the variety release authorities. The commercial release of genetically modified (GM) crops for cultivation requires the approval of biosafety regulatory packages. The evaluation and approval of lead events fall under the jurisdiction of competent national authorities for biosafety (which may be ministries, autonomous authorities, or agencies). The evaluation of lead events fundamentally comprises a review of environmental, food, and feed safety data as provided for in the Biosafety Acts, implementing regulations, and, in some cases, the involvement of other relevant legal instruments. Although the lead GM event may be commercially released for farmers to cultivate, it is often introgressed into locally adapted and farmer preferred non-GM cultivars that are already released and grown by the farmers. The introduction of new biotechnology products to farmers is a process that includes comprehensive testing in the laboratory, greenhouse, and field over some time. The process provides answers to questions about the safety of the products before being introduced into the environment and marketplace. This is the first step in regulatory approvals. The output of the research and development phase of the product development cycle is the identification of a safe and best performing event for advancement to regulatory testing, likely commercialization, and general release. The process of the commercial release of new crop varieties in countries with established formal seed systems is guided by well-defined procedures and approval systems and regulated by the Seed Acts and implemented regulations. In countries with seed laws, no crop varieties are approved for commercial cultivation prior to the fulfillment of the national performance trials and the distinctness, uniformity, and stability tests, as well as prior to the approval by the National Variety Release Committee. This review outlines key challenges faced by African countries in the deployment of GM crops and cites lessons learned as well as best practices from countries that have successfully commercialized genetically engineered crops.

2.
BMC Proc ; 12(Suppl 8): 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30079102

RESUMO

The New Partnership for Africa's Development (NEPAD) Agency recognizes that Africa is in a period of transition and that this demands exploring and harnessing safe advances made in science-based innovations including modern biotechnology. To advance the science of biotechnology in Africa effectively, while at the same time safeguarding human health and the environment, the African Union (AU) adopted a High-Level Panel report on modern biotechnology entitled, Freedom to Innovate, which advocated for a coevolutionary approach where technology development goes hand in hand with regulation. Furthermore, most AU member states are Parties to the Cartagena Protocol on Biosafety (CPB), a legally binding international agreement negotiated, concluded and adopted within the framework of the Convention on Biological Diversity. This seeks to guide Parties in developing systems for the environmentally sound management of modern biotechnology applications. Currently, 49 AU Member States have signed and ratified the CPB, of which 12 have passed biosafety laws. African Union (AU) member states are at different stages in the development of regulatory frameworks for applications of modern biotechnology, which include genetically modified (GM) products and other emerging technologies. Biosafety regulatory frameworks comprise: biotechnology and/or biosafety policy; laws, regulations and guidelines; administrative systems; decision-making systems; and mechanisms for public engagement. To assist Member States to implement functional regulatory frameworks for both agriculture and health applications, the NEPAD Agency established the African Biosafety Network of Expertise (ABNE) and the African Medicines Regulatory Harmonization (AMRH). Currently, transgenic insects and GM crops are regulated by Competent National Authorities whose mandate derives from national biosafety laws. For GM crops, a lot of research has been conducted up to the confined field trial (CFT) and multi-location trials stages in a number of African countries. Burkina Faso has fully functional containment facilities for transgenic mosquitoes while Mali and Uganda are developing theirs. The Burkina Faso regulatory agency has granted permits and has already received sets of sterile mosquito eggs for trials in the contained facility. It is instructive to note that both ABNE and AMRH have worked with national and regional regulatory bodies in Africa to enhance their technical capacities for informed decision making, adoption of best practices, and compliance with international standards. It is against the backdrop of a rich blend of on-the-ground knowledge, experience, expertise, and insight into the context and political sensitivities of member states that the NEPAD Agency seeks to expand existing support. This would include capacity strengthening in the regulation of emerging technologies, such as the application of gene drives in the development of transgenic mosquito for the control of malaria transmission.

3.
GM Crops Food ; 4(1): 19-27, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23090016

RESUMO

In tackling agricultural challenges, policy-makers in sub-Saharan Africa (SSA) have increasingly considered genetically modified (GM) crops as a potential tool to increase productivity and to improve product quality. Yet, as elsewhere in the world, the adoption of GM crops in SSA has been marked by controversy, encompassing not only the potential risks to animal and human health, and to the environment, but also other concerns such as ethical issues, public participation in decision-making, socio-economic factors and intellectual property rights. With these non-scientific factors complicating an already controversial situation, disseminating credible information to the public as well as facilitating stakeholder input into decision-making is essential. In SSA, there are various and innovative risk communication approaches and strategies being developed, yet a comprehensive analysis of such data is missing. This gap is addressed by giving an overview of current strategies, identifying similarities and differences between various country and institutional approaches and promoting a way forward, building on a recent workshop with risk communicators working in SSA.


Assuntos
Comunicação , Produtos Agrícolas/genética , Educação , África Subsaariana , Humanos , Plantas Geneticamente Modificadas , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...