Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; : e63715, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766920

RESUMO

Tumor necrosis factor type 1A receptor-associated periodic syndrome (TRAPS) and cryopyrin-associated autoinflammatory syndrome (CAPS) are rare monogenic autoinflammatory diseases (AIDs) mainly caused by pathogenic variations in the TNFRSF1A and NLRP3 genes, respectively. Here, we describe a unique patient presenting with symptoms overlapping both TRAPS and CAPS, without known pathogenic variants in the respective genes. The patient harbored the p.Val200Met variation in NLRP3 and the p.Ser226Cys variation in TNFRSF1A, prompting us to delve deeper into the functional analysis due to conflicting or inconclusive pathogenicity interpretations of the variants across various databases. Molecular dynamics analysis of the p.Val200Met variation in NLRP3 revealed a rigid conformation in the helical domain 2 subdomain of the NACHT domain. This increased rigidity suggests a potential mechanism by which this variation supports the assembly of the NLRP3 inflammasome. Notably, the patient's peripheral mononuclear blood cells demonstrated an elevated IL-1ß response upon lipopolysaccharides (LPS) induction. Subsequent initiation of anti-IL-1ß therapy resulted in a significant alleviation of the patient's symptoms, further supporting our hypothesis. We interpret these findings as suggestive of a potential pathophysiological role for the NLPR3 p.Val200Met variation in shaping the patient's clinical phenotype, which was also supported by clinical and genetic analysis of the family. This case underscores the complexity of the genetic landscape in AIDs and highlights the value of combining family genetic and functional data to refine the understanding and management of such challenging cases.

2.
Sci Rep ; 13(1): 18399, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884585

RESUMO

Inhibiting protein-protein interactions of the Myc family is a viable pharmacological strategy for modulation of the levels of Myc oncoproteins in cancer. Aurora A kinase (AurA) and N-Myc interaction is one of the most attractive targets of this strategy because formation of this complex blocks proteasomal degradation of N-Myc in neuroblastoma. Two crystallization studies have captured this complex (PDB IDs: 5g1x, 7ztl), partially resolving the AurA interaction region (AIR) of N-Myc. Prompted by the missing N-Myc fragment in these crystal structures, we modeled the complete structure between AurA and N-Myc, and comprehensively analyzed how the incomplete and complete N-Myc behave in complex by molecular dynamics simulations. Molecular dynamics simulations of the incomplete PDB complex (5g1x) repeatedly showed partial dissociation of the short N-Myc fragment (61-89) from the kinase. The missing N-Myc (19-60) fragment was modeled utilizing the N-terminal lobe of AurA as the protein-protein interaction surface, wherein TPX2, a well-known partner of AurA, also binds. Binding free energy calculations along with flexibility analysis confirmed that the complete AIR of N-Myc stabilizes the complex, accentuating the N-terminal lobe of AurA as a binding site for the missing N-Myc fragment (19-60). We further generated additional models consisting of only the missing N-Myc (19-60), and the fused form of TPX2 (7-43) and N-Myc (61-89). These partners also formed more stable interactions with the N-terminal lobe of AurA than did the incomplete N-Myc fragment (61-89) in the 5g1x complex. Altogether, this study provides structural insights into the involvement of the N-terminus of the AIR of N-Myc and the N-terminal lobe of AurA in formation of a stable complex, reflecting its potential for effective targeting of N-Myc.


Assuntos
Aurora Quinase A , Epilepsia , Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Humanos , Aurora Quinase A/química , Sítios de Ligação , Simulação de Dinâmica Molecular
3.
J Chem Inf Model ; 62(5): 1345-1355, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35201762

RESUMO

Often studies analyzing stability data sets and/or predictors ignore neutral mutations and use a binary classification scheme labeling only destabilizing and stabilizing mutations. Recognizing that highly concentrated neutral mutations interfere with data set quality, we have explored three protein stability data sets: S2648, PON-tstab, and the symmetric Ssym that differ in size and quality. A characteristic leptokurtic shape in the ΔΔG distributions of all three data sets including the curated and symmetric ones was reported due to concentrated neutral mutations. To further investigate the impact of neutral mutations on ΔΔG predictions, we have comprehensively assessed the performance of 11 predictors on the PON-tstab data set. Correlation and error analyses showed that all of the predictors performed the best on the neutral mutations, while their performance became gradually worse as the ΔΔG of the mutations departed further from the neutral zone regardless of the direction, implying a bias toward dense mutations. To this end, after unraveling the role of concentrated neutral mutations in biases of stability data sets, we described a systematic enrichment approach to balance the ΔΔG distributions. Before enrichment, mutations were clustered based on their biochemical and/or structural features, and then three mutations were selected from every 2 kcal/mol of each cluster. Upon implementation of this approach by distinct clustering schemes, we generated five subsets varying in size and ΔΔG distributions. All subsets showed improved ΔΔG and frequency distributions. We ultimately reported that the errors toward enriched subsets were higher than those toward the parent data sets, confirming the enrichment of difficult-to-predict mutations in the subsets. In summary, we elaborated the prediction bias toward a concentrated neutral zone and also implemented a rational strategy to tackle this and other forms of biases. Ultimately, this study equipping us with an extended view of shortcomings of stability data sets is a step taken toward development of an unbiased predictor.


Assuntos
Proteínas , Mutação , Estabilidade Proteica , Proteínas/química , Proteínas/genética , Termodinâmica
4.
Front Chem ; 9: 716438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540798

RESUMO

Metallation status of human Cu/Zn superoxide dismutase 1 (SOD1) plays a pivotal role in the pathogenesis of amyotrophic lateral sclerosis (ALS). All of the amino acids found in the bimetallic center have been associated with ALS except for two positions. H63 which forms the bridging imidazolate ion in the bimetallic center and K136 which is not directly involved in coordination but located in the bimetallic center were not reported to be mutated in any of the identified ALS cases. In this study, we investigated the structure and flexibility of five SOD1 variants by using classical molecular dynamics simulations. These variants include three substitutions on the non-ALS-linked positions; H63A, H63R, K136A and ALS-linked positions; G37R, H46R/H48D. We have generated four systems for each variant differing in metallation and presence of the intramolecular disulfide bond. Overall, a total of 24 different dimers including the wild-type were generated and simulated at two temperatures, 298 and 400 K. We have monitored backbone mobility, fluctuations and compactness of the dimer structures to assess whether the hypothetical mutations would behave similar to the ALS-linked variants. Results showed that particularly two mutants, H63R and K136A, drastically affected the dimer dynamics by increasing the fluctuations of the metal binding loops compared with the control mutations. Further, these variants resulted in demetallation of the dimers, highlighting probable ALS toxicity that could be elicited by the SOD1 variants of H63R and K136A. Overall, this study bridges two putative SOD1 positions in the metallic center and ALS, underlining the potential use of atomistic simulations for studying disease variants.

5.
J Mol Graph Model ; 103: 107804, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33248341

RESUMO

NFAT5 as a transcription factor with an established role in osmotic stress response, has also been revealed to be active under numerous settings, including pathological conditions such as diabetic microvascular complications, chronic arthritis and cancer. Despite these links, current strategies for downregulating NFAT5 activity only relies on indirect modulators, not directly targeting NFAT5, itself. With this study, through using a computational approach, an original peptide was explored to directly target C terminal dimerization of NFAT5 RHR, located in its DNA binding domain. At first, homodimeric NFAT5 RHR bound to its consensus DNA was used for prediction of a preliminary peptide sequence. Possible amino acid replacements for this preliminary peptide were predicted for optimization, which was followed by addition of a cell penetrating peptide sequence. These attempts yielded a small peptide library, which was further investigated for peptide affinities towards C terminal of NFAT5 RHR through molecular docking, 50 ns and 250 ns molecular dynamics simulations, followed by estimation of MM-PBSA based relative binding free energies. Results indicated that after receiving mutations on the preliminary peptide sequence for optimization, a unique peptide could target C terminal dimerization region of NFAT5 RHR through using its cell penetrating peptide sequence. In conclusion, this is the first study presenting computational evidence on identification of a novel peptide capable of directly targeting NFAT5 dimerization. Besides, future implications of these observations were also discussed in terms of methodology and possible applications.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Dimerização , DNA/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/metabolismo
6.
Neurosci Lett ; 734: 135108, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32497733

RESUMO

Zeatin, an adenine-derivative cytokinin has well-established functions in plants. It is also suggested to activate A2A receptors in animals, however, there is limited knowledge of its effects. The main objective of this study is to evaluate the possible effects of zeatin on depression, and our hypothesis is that zeatin might induce an anti-depressant effect via A2A receptor-linked pathways. The forced swim test was used to create a depression-like model on female and male rats. A balanced zeatin isomer mixture (80 % trans-zeatin (tZ), 20 % cis-zeatin (cZ)) was administered intraperitoneally to analyze the effects. Caffeine with a suboptimal dose (2 mg/kg) was used as a known ligand of A2A receptor. Finally, a molecular docking study was also implemented to compare caffeine and tZ in the ligand binding site of A2A receptor. We demonstrate that (1) there is a clear sex-dependent difference in the susceptibility to depression-like symptoms, where female rats in the metestrus phase display higher depressive-like behavior and lower responses to the anti-depressant-like effects of pharmacological applications; (2) 10 mg/kg zeatin exerts an anti-depressant-like effect for both females and males without affecting locomotor activity; (3) 8 mg/kg tZ alone replicates this effect for both sexes, (4) the effect of zeatin is also differential for either sex and (5) the similar effect of caffeine and zeatin implies that the effect might be exerted via A2A receptor mediated pathways. Computational analysis further yielded similar binding patterns for both ligands. In conclusion, zeatin might have a potential therapeutic use in depression, acting via adenosinergic pathways.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Zeatina/farmacologia , Animais , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Caracteres Sexuais
7.
Med Res Rev ; 39(1): 146-175, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846950

RESUMO

Circumvention of apoptotic machinery is one of the distinctive properties of carcinogenesis. Extensively established key effectors of such apoptotic bypass mechanisms, the antiapoptotic BCL-2 (apoptosis regulator BCL-2) proteins, determine the response of cancer cells to chemotherapeutics. Within this background, research and development of antiapoptotic BCL-2 inhibitors were considered to have a tremendous amount of potential toward the discovery of novel pharmacological modulators in cancer. In this review, milestone achievements in the development of selective antiapoptotic BCL-2 proteins inhibitors for BCL-2, BCL-XL (BCL-2-like protein 1), and MCL-1 (induced myeloid leukemia cell differentiation protein MCL-1) were summarized and their future implications were discussed. In the first section, the design and development of BCL-2/BCL-XL dual inhibitor navitoclax, as well as the recent advances and clinical experience with selective BCL-2 inhibitor venetoclax, were synopsized. Preclinical data from selective BCL-XL inhibitors, which are currently undergoing extensive testing as a single agent or in combination with other therapeutic agents, were further summarized. In the second section, MCL-1 inhibitors developed as potential anticancer agents were reviewed regarding their specificity toward MCL-1. Explicitly, studies leading to the identification of MCL-1, nonselective and selective targeting of MCL-1, and recently initiated clinical trials were compiled in chronological order. Based on these concepts, future directions were further discussed for increasing selectivity in the design of prosurvival BCL-2 member inhibitors.


Assuntos
Apoptose , Sistemas de Liberação de Medicamentos , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios Clínicos como Assunto , Humanos
8.
Free Radic Biol Med ; 111: 209-218, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27840321

RESUMO

The axis between lipid oxidation products and cell death is explicitly linked. 4-Hydroxynonenal (HNE), as well as other lipid oxidation products was also established to induce apoptosis in various experimental settings. Yet, the decision leading to apoptotic execution not only includes upregulation of pro-apoptotic signals but also involves a downregulation of anti-apoptotic signals. Within the frames of this paradigm, HNE acts significantly different from other lipid oxidation products in the regulation of two widely known anti-apoptotic elements, Nuclear Factor-κB (NF-κB) transcription factors and its target anti-apoptotic B-Cell Lymphoma-2 (Bcl-2) protein. Even so, a review inclusively linking these anti-apoptotic factors and their crosstalk upon HNE exposure is still at demand. In order to elucidate presence of such crosstalk, reports on the link between HNE and NF-κB pathway, on the link between HNE and anti-apoptotic Bcl-2 and on the crossroad of these links during HNE exposure were summarized and discussed. IKK, the upstream kinase of NF-κB, has been shown to regulate HNE mediated phosphorylation and inactivation of Bcl-2 by our group. Based on this observation and other studies reporting on HNE-NF-κB pathway interaction, IKK was proposed to mediate the crosstalk of NF-κB pathway and anti-apoptotic Bcl-2 protein, when HNE is present. These reports further suggested that HNE based inhibition of NF-κB pathway is highly likely. Besides, evidence on the HNE-anti-apoptotic Bcl-2 axis supported the deduction of HNE mediated NF-κB pathway inhibition and IKK mediated Bcl-2 inactivation. In conclusion, through combining all evidences, three possible scenarios intervening the HNE mediated crosstalk between NF-κB pathway and anti-apoptotic Bcl-2 protein, was extrapolated.


Assuntos
Aldeídos/metabolismo , Doenças Cardiovasculares/metabolismo , NF-kappa B/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação , Peroxidação de Lipídeos , NF-kappa B/genética , Neoplasias/genética , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais
9.
PLoS One ; 11(8): e0161494, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27536992

RESUMO

SIRT6 is a protein deacetylase, involved in various intracellular processes including suppression of glycolysis and DNA repair. Aldose Reductase (AR), first enzyme of polyol pathway, was proposed to be indirectly associated to these SIRT6 linked processes. Despite these associations, presence of SIRT6 based regulation of AR still remains ambiguous. Thus, regulation of AR expression by SIRT6 was investigated under hyperosmotic stress. A unique model of osmotic stress in U937 cells was used to demonstrate the presence of a potential link between SIRT6 and AR expression. By overexpressing SIRT6 in HeLa cells under hyperosmotic stress, its role on upregulation of AR was revealed. In parallel, increased SIRT6 activity was shown to upregulate AR in U937 cells under hyperosmotic milieu by using pharmacological modulators. Since these modulators also target SIRT1, binding of the inhibitor, Ex-527, specifically to SIRT6 was analyzed in silico. Computational observations indicated that Ex-527 may also target SIRT6 active site residues under high salt concentration, thus, validating in vitro findings. Based on these evidences, a novel regulatory step by SIRT6, modifying AR expression under hyperosmotic stress was presented and its possible interactions with intracellular machinery was discussed.


Assuntos
Aldeído Redutase/metabolismo , Células HeLa/fisiologia , Pressão Osmótica/fisiologia , Sirtuínas/fisiologia , Células U937/fisiologia , Simulação por Computador , Regulação Enzimológica da Expressão Gênica/fisiologia , Células HeLa/enzimologia , Células HeLa/metabolismo , Humanos , Immunoblotting , Técnicas In Vitro , Simulação de Acoplamento Molecular , Células U937/enzimologia , Células U937/metabolismo , Regulação para Cima
10.
Mol Carcinog ; 55(11): 1584-1597, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26373689

RESUMO

Most tumors primarily rely on glycolysis rather than mitochondrial respiration for ATP production. This phenomenon, also known as Warburg effect, renders tumors more sensitive to glycolytic disturbances compared to normal cells. 3-bromopyruvate is a potent inhibitor of glycolysis that shows promise as an anticancer drug candidate. Although investigations revealed that 3-BP triggers apoptosis through ATP depletion and subsequent AMPK activation, the underlying molecular mechanisms coupling AMPK to apoptosis are poorly understood. We showed that 3-BP leads to a rapid ATP depletion which was followed by growth inhibition and Bax-dependent apoptosis in HCT116 cells. Apoptosis was accompanied with activation of caspase-9 and -3 while pretreatment with a general caspase inhibitor attenuated cell death. AMPK, p38, JNK, and Akt were phosphorylated immediately upon treatment. Pharmacological inhibition and silencing of AMPK largely inhibited 3-BP-induced apoptosis and reversed phosphorylation of JNK. Transcriptional activity of FoxO3a was dramatically increased subsequent to AMPK-mediated phosphorylation of FoxO3a at Ser413. Cell death analysis of cells transiently transfected with wt or AMPK-phosphorylation-deficient FoxO3 expression plasmids verified the contributory role of AMPK-FoxO3a axis in 3-BP-induced apoptosis. In addition, expression of proapoptotic Bcl-2 proteins Bim and Bax were upregulated in an AMPK-dependent manner. Bim was transcriptionally activated in association with FoxO3a activity, while Bax upregulation was abolished in p53-null cells. Together, these data suggest that AMPK couples 3-BP-induced metabolic disruption to intrinsic apoptosis via modulation of FoxO3a-Bim axis and Bax expression. © 2015 Wiley Periodicals, Inc.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Forkhead Box O3/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Piruvatos/farmacologia , Trifosfato de Adenosina/metabolismo , Apoptose , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Células HCT116 , Células HeLa , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima
11.
Eur J Pharm Sci ; 83: 120-31, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26709080

RESUMO

Microalgae are very rich in bioactive compounds, minerals, polysaccharides, poly-unsaturated fatty acids and vitamins, and these rich constituents make microalgae an important resource for the discovery of new bioactive compounds with applications in biotechnology. In this study, we studied the antileukemic activity of several chosen microalgae species at the molecular level and assessed their potential for drug development. Here we identified Stichococcus bacillaris, Phaeodactylum tricornutum, Microcystis aeruginosa and Nannochloropsis oculata microalgae extracts with possible antileukemic agent potentials. Specifically we studied the effects of these extracts on intracellular signal nodes and apoptotic pathways. We characterized the composition of essential oils of these fifteen different algae extracts using gas chromatography-mass spectrometry (GC-MS). Finally, to identify potential molecular targets causing the phenotypic changes in leukemic cell lines, we docked a selected group of these essential oils to several key intracellular proteins. According to results of rank score algorithm, five of these essential oils analyzed might be considered as in silico plausible candidates to be used as antileukemic agents.


Assuntos
Antineoplásicos/farmacologia , Microalgas , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA , Humanos , Leucemia , Modelos Biológicos , Ligação Proteica
12.
Cell Signal ; 27(11): 2160-72, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26297866

RESUMO

So far, a myriad of molecules were characterized to modulate NFAT5 and its downstream targets. Among these NFAT5 modifiers, SIRT1 was proposed to have a promising role in NFAT5 dependent events, yet the exact underlying mechanism still remains obscure. Hence, the link between SIRT1 and NFAT5-aldose reductase (AR) axis under osmotic stress, was aimed to be delineated in this study. A unique osmotic stress model was generated and its mechanistic components were deciphered in U937 monocytes. In this model, AR expression and nuclear NFAT5 stabilization were revealed to be positively regulated by SIRT1 through utilization of pharmacological modulators. Overexpression and co-transfection studies of NFAT5 and SIRT1 further validated the contribution of SIRT1 to AR and NFAT5. The involvement of SIRT1 activity in these events was mediated via modification of DNA binding of NFAT5 to AR ORE region. Besides, NFAT5 and SIRT1 were also shown to co-immunoprecipitate under isosmotic conditions and this interaction was disrupted by osmotic stress. Further in silico experiments were conducted to investigate if SIRT1 directly targets NFAT5. In this regard, certain lysine residues of NFAT5, when kept deacetylated, were found to contribute to its DNA binding and SIRT1 was shown to directly bind K282 of NFAT5. Based on these in vitro and in silico findings, SIRT1 was identified, for the first time, as a novel positive regulator of NFAT5 dependent AR expression under osmotic stress in U937 monocytes.


Assuntos
Aldeído Redutase/biossíntese , Pressão Osmótica/fisiologia , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...