Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(13): 6392-6409, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39005534

RESUMO

GaN is a technologically indispensable material for various optoelectronic properties, mainly due to the dopant-induced or native atomic-scale point defects that can create single photon emitters, a range of luminescence bands, and n- or p-type conductivities. Among the various dopants, chromium and manganese-induced defects have been of particular interest over the past few years, because some of them contribute to our present-day light-emitting diode (LED) and spintronic technologies. However, the nature of such atomistic centers in Cr and Mn-doped GaN is yet to be understood. A comprehensive defect thermodynamic analysis of Cr- and Mn-induced defects is essential for their engineering in GaN crystals because by mapping out the defect stabilities as a function of crystal growth parameters, we can maximize the concentration of the target point defects. We therefore investigate chromium and manganese-induced defects in GaN with ab initio methods using the highly accurate exchange-correlation hybrid functionals, and the phase transformations upon excess incorporation of these dopants using the CALPHAD method. We also investigate the impact of oxygen codoping that can be unintentionally incorporated during crystal growth. Our analysis sheds light on the atomistic cause of the unintentional n-type conductivity in GaN, being ON-related. In the case of Cr doping, the formation of CrGa defects is the most dominant, with an E +/0 charge transition at E VBM + 2.19 eV. Increasing nitrogen partial pressure tends to enhance the concentration of CrGa. However, in the case of doping with Mn, several different Mn-related centers can form depending on the growth conditions, with MnGa being the most dominant. MnGa possesses the E 2+/+, E +/0, and E 0/- charge transitions at 0.56, 1.04, and 2.10 eV above the VBM. The incorporation of oxygen tends to cause the formation of the MnGa-VGa center, which explains a series of prior experimental observations in Mn-doped GaN. We provide a powerful tool for point defect engineering in wide band gap binary semiconductors that can be readily used to design optimal crystal growth protocols.

2.
Turk J Chem ; 44(2): 378-392, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488164

RESUMO

A study of the electrodeposition of silver from 2 different types of electrolytes; (1) neutral pyrophosphatecyanide electrolyte and (2) alkaline high concentrated cyanide electrolyte in the presence of a variety of additives such as 2-mercaptobenzothiazole, potassium selenocyanate, and potassium antimony tartrate was performed. Influence of additives and cyanide concentration on microstructure and kinetics of the cathodic processes were studied. A brightener couple, 2-mercaptobenzothiazole and potassium antimony tartrate, were combined within this investigation and detected to be highly effective for silver electrodeposition. The rapid increase in current density at the same potential interval related to grain refinement effect of potassium antimony tartrate was shown. The cyclic organic compound, 2-mercaptobenzothiazole, polarizes the reduction to high cathodic potential in pyrophosphate electrolyte. However, the sufficient levelling effect required for the mirror-bright appearance seems to be related to the high polarizing effect of the high concentration cyanide content. In the case of pyrophosphate electrolytes, sufficient levelling cannot be achieved, so semigloss coatings are obtained. The low cathodic potential electrodeposition of silver in pyrophosphate electrolyte, which is found to proceed by 3D instantaneous nucleation, is polarized to high cathodic potentials and grows into 3D progressive nucleation and diffusion-controlled growth in high concentration cyanide electrolyte.

3.
J Hazard Mater ; 112(3): 261-7, 2004 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-15302447

RESUMO

An electrochemical method was applied for the recovery of copper both from the spent solutions and from the rinse waters of electroless copper plating baths, containing copper sulfate, formaldehyde, quadrol, and NaOH. Experiments were conducted in a rotating packed cell (Rollschichtzelle) to investigate the effects of current density, electrolyte composition, temperature, and pH on the copper recovery. All the copper (final CCu=0.1 ppm) was recovered from the waste and rinse waters of chemical copper plating plants with 70% current efficiency by the electrochemical treatment in a rotating packed cell at 130 A/m2 current density, room temperature, with 5mm diameter cathode granules, with the presence of formaldehyde, and with a specific energy consumption of 3.2-3.5 kW h/kg Cu. On the other hand, final copper concentrations of 5 ppm were reached with 62% current efficiency and 5.5-5.8 kW h/kg Cu specific energy consumption, with electrolytes containing no formaldehyde.


Assuntos
Cobre/química , Galvanoplastia/instrumentação , Poluentes Químicos da Água/isolamento & purificação , Poluição Química da Água/prevenção & controle , Eletrodos , Galvanoplastia/métodos , Etilenodiaminas/química , Formaldeído/química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...