Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 41(12): 3895-3906, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35969576

RESUMO

Learning-based translation between MRI contrasts involves supervised deep models trained using high-quality source- and target-contrast images derived from fully-sampled acquisitions, which might be difficult to collect under limitations on scan costs or time. To facilitate curation of training sets, here we introduce the first semi-supervised model for MRI contrast translation (ssGAN) that can be trained directly using undersampled k-space data. To enable semi-supervised learning on undersampled data, ssGAN introduces novel multi-coil losses in image, k-space, and adversarial domains. The multi-coil losses are selectively enforced on acquired k-space samples unlike traditional losses in single-coil synthesis models. Comprehensive experiments on retrospectively undersampled multi-contrast brain MRI datasets are provided. Our results demonstrate that ssGAN yields on par performance to a supervised model, while outperforming single-coil models trained on coil-combined magnitude images. It also outperforms cascaded reconstruction-synthesis models where a supervised synthesis model is trained following self-supervised reconstruction of undersampled data. Thus, ssGAN holds great promise to improve the feasibility of learning-based multi-contrast MRI synthesis.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina Supervisionado
2.
Med Image Anal ; 78: 102429, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367713

RESUMO

Magnetic resonance imaging (MRI) offers the flexibility to image a given anatomic volume under a multitude of tissue contrasts. Yet, scan time considerations put stringent limits on the quality and diversity of MRI data. The gold-standard approach to alleviate this limitation is to recover high-quality images from data undersampled across various dimensions, most commonly the Fourier domain or contrast sets. A primary distinction among recovery methods is whether the anatomy is processed per volume or per cross-section. Volumetric models offer enhanced capture of global contextual information, but they can suffer from suboptimal learning due to elevated model complexity. Cross-sectional models with lower complexity offer improved learning behavior, yet they ignore contextual information across the longitudinal dimension of the volume. Here, we introduce a novel progressive volumetrization strategy for generative models (ProvoGAN) that serially decomposes complex volumetric image recovery tasks into successive cross-sectional mappings task-optimally ordered across individual rectilinear dimensions. ProvoGAN effectively captures global context and recovers fine-structural details across all dimensions, while maintaining low model complexity and improved learning behavior. Comprehensive demonstrations on mainstream MRI reconstruction and synthesis tasks show that ProvoGAN yields superior performance to state-of-the-art volumetric and cross-sectional models.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Estudos Transversais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...